

Zootaxa 3956 (4): 513-530 www.mapress.com/zootaxa/

Copyright © 2015 Magnolia Press

http://dx.doi.org/10.11646/zootaxa.3956.4.4

http://zoobank.org/urn:lsid:zoobank.org;pub:6DF9DA3A-ED5A-44E9-AB31-C09CC2AF8F9B

Records of Naididae and Lumbriculidae (Clitellata) from Tibet, China, with description of a new species of Nais

YONGDE CUI¹, XUEBAO HE², YU PENG^{1, 3} & HONGZHU WANG^{1,4}

¹State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China

²Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China ³University of Chinese Academy of Sciences, Beijing 100049, China

⁴Corresponding author. E-mail: wanghz@ihb.ac.cn

Abstract

The Tibetan Plateau is considered to have a unique fauna of fish and invertebrates. However, little taxonomic work has been conducted on the aquatic Oligochaeta of Tibet, China. Based on the surveys of rivers and lakes in this region between 2010 and 2011, we recorded 25 species of oligochaetes belonging to 2 families and 15 genera. This paper provides an overview of the species composition of different waterbodies, the description of one new species, Nais longidentata sp. **n.**, and re-descriptions of four previously described species. Hitherto, 30 species of aquatic oligochaetes have been recorded from Tibet. The oligochaete fauna is similar to that of the Holarctic, but has several endemic elements.

Key words: Aquatic Oligochaeta, new species, Nais, Tibet, China

Introduction

Freshwater oligochaetes have been studied in China for almost one hundred years (Chen 1940; Wang & Cui 2007). Altogether 117 species, representing 7 families and 47 genera have been recorded. Initial research was mainly focused on eastern and central China (Wang & Cui 2007), with only scant research on southwest China, including Tibet. The Tibetan Plateau is considered as one of the global biodiversity hotspots for its unique natural environment (Li & Fang 1999), which accounts for the rich occurrence of endemic species of various taxa in this region (Chiang et al. 1983; Cao & Zhu 1988; Chen & Chen 2010). The history of taxonomic work on oligochaetes in Tibet has been reviewed in He et al. (2012) and Peng et al. (2014).

Between 2010 and 2011, we carried out an investigation of oligochaetes in Tibet, sampling a wide range of waterbodies, including rivers, lakes and wetlands, with the aims of collecting new species and obtaining a better understanding of the distribution patterns across a range of different habitats. Altogether, 25 species belonging to 2 families and 15 genera were identified in these surveys, including two species new to science, Tubifex conicus and Isochaetides palmatus, described in He et al. (2012). This paper gives an overview of the species found in the different waterbodies, with the aim of providing useful baseline data for future studies. We further describe one additional new species of Nais. References in the species section are restricted to those dealing with records and descriptions from China.

Description of sampling sites

Sixty-two sites were sampled from six regions, such as the mainstem of the Yarlung Zangbu River, Lhasa River, Niyang River, Lake Yamzhao Yumco, Lake Namco and Lalu Wetland in Tibet (Fig. 1). At each site a range of physical parameters were measured, including water temperature (WT, °C), dissolved oxygen (DO, mg/L), pH, and conductivity (Cond, μ S/cm) at the sampling date (Table 1). Water temperature was measured with a waterproof digital thermometer (SATO SK-250WP-N); further devices used were YSI DO200 dissolved oxygen meter, YSI pH 100 pH meter, and YSI EC300 conductivity meter. Measurements are listed in the Table 1. Additional site information is provided below.

FIGURE 1. Sampling sites in Tibet. A. Map of China. B. Sampling sites of Yarlung Zangbo River, Lhasa River, Niyang River, Lake Yamzho Yumco, Lake Namco and Lalu Wetland, respectively.

Yarlung Zangbu River, an international water system, is located mainly in Tibet and is among the highest altitude rivers in the world. Its overall length in China is 2,057 km, with a drainage area of 240,480 km², and annual runoff volume to India and Bangladesh up to 140 billion m³. Its source lies in the Gyaimanezong Glacier in Zongba County. The Yarlung Zangbo River belongs to the water system of the Indian Ocean and it flows from west to east across the southern section of the Tibet Plateau. It is the most precipitous river in China as a result of over 5,400 meters in total height drop. Four stations (ST1–ST4) were sampled within the Qushui Reach, and three stations (ST5–ST7) were sampled within the Milin Reach.

Lhasa River is one of the five major tributaries of the Yarlung Zangbo, which originates close to Nyangqentanglha Mountain (5,020 m asl) on the Qinghai-Tibet Plateau. It is approximately 551 km long and drains nearly 30,000 km². Five stations (ST8–ST12) on the mainstem of Lhasa River were sampled, and six stations (ST13–ST18) were located on tributaries of the Lhasa River.

Niyang River is a major river in south-west Tibet and the longest tributary of the Yarlung Zangbu River. It has a length of 307.5 km and originates from the Cuomuliangla, west of the Mila Mountain, about 5,000 m asl. The river joins the Yarlung Zangbu River in Cemeng, Nyingchi. Seventeen samples (ST19–ST35) were collected from the mainstem and tributaries of Niyang River.

Lake Yamzhao Yumco. With a maximum length of 74 km and a maximum width of 33 km, Lake Yamzhao Yumco covers an area of 678 km² at a water level of 4441 m asl. The maximum depth is 59 m and the mean depth is 30 m. Shoreline development (D_L), a measure of shoreline convolution equals 4.35 (value for a circle is 1). The annual mean air temperature around the lake area is 2.6?. Mean annual precipitation is 373.0 mm (92% occurring in June-September), and mean evaporation is 2074.0 mm. The lake receives surface runoff from the catchment (6,100 km²) through six rivers, and has a recharge coefficient of 9.0 (Wang & Dou 1998). Sixteen samples (ST36–ST51) were collected from the north part of the lake, and two samples (ST52–ST53) were sampled from the shoreline.

α waterbodyw	Ŀ	Collection locality: nearest town and	Geocraphical coordinates	Υ	WD	ΜT	DO	Нч	COND	Sediment	Samuling date
1 Qashui County, Yarlung Zanglo River N29'1975.1", E90"4471.4" 538 0.4 16.4 6.02 8.42 28.10 mainly sind 11.01, 2010 3 Qushui County, Yarlung Zanglo River N29'1975.1", E90"4471.4" 538 0.5 16.0 7.02 8.22 29.13 mainly sind 11.01, 2010 4 Qushui County, Yarlung Zanglo River N29'197.9", "F.g09"457.1" 5378 0.2 18.3 215.5 clay and store 11.01, 2010 6 Milin County, Yarlung Zangbo River N29'170.9", "F.g09"454.6" 2949 0.15 8.1 8.2 216.6 649; and argone 11.01, 2010 6 Nilin County, Yarlung Zangbo River N29'192.6", E94"454.6" 2945 0.15 8.1 8.2 26.6 clay and store 11.01, 2010 7 Milin County, Varlung Zangbo River N29'192.6", E94"454.6" 2946 0.5 15.2 768 8.3 216.4 761 and argone 11.01, 2010 7 Milin County, Urlung Zangbo River N29'192.6", E94"254.8" 5060 0.5 8	2	waterbody	Ocographical cool dillares	(m)	(m)	(°C)	(mg/L)	III	(μS/cm)		Damping date
$ \begin{array}{{ccccccccccccccccccccccccccccccccccc$	1	Qushui County, Yarlung Zangbo River	N29°19'35.1", E90°40'21.4"E	3598	0.4	16.4	6.02	8.42	281.0	mainly sand	1 Jul, 2010
3 Qushui County, Yarhung Zangbo River N29°162.48", E90°4856.1" 3578 0.2 18.3 6.35 8.33 215.5 clay and stone 11.41, 2010 4 Oushui County, Yarhung Zangbo River N29°179.9", E90°4757.1" 3587 0.3 17.2 5.89 8.30 216.6 clay and stone 11.41, 2010 6 Milin County, Yarhung Zangbo River N29°179.9", E94°1454.6" 2945 0.15 8.1 8.92 9.23 26.6 clay and stone 11.41, 2010 7 Milin County, Yarhung Zangbo River N29°1392.6", E94°2115.6" 2946 0.15 8.1 8.23 16.4.7 clay and stone 19.41, 2010 8 Lhass River N29°1392.4", E99°750.8" 5660 0.4 18.4 7.5 8.3 23.14, 2010 25.4m, 2011 9 Lhass River N29°1392.4", E99°750.8" 5660 0.4 18.4 7.5 8.33 20.60 19.4 10.4, 2010 10 Outsine County, Lhass River N29°2377", E90°5238.4" 5600 0.25 16.2 6.13	7	Qushui County, Yarlung Zangbo River	N29°19'13.3", E90°44'34.3"	3584	0.5	16.0	7.02	8.22	291.3	mainly silt	1 Jul, 2010
4 Qushui County, Yarlung Zangbo River N29°1700.7", E90°51'37.1" 3587 0.5 17.2 5.89 8.30 216.6 clay and gravel 1.14, 2010 5 Milin County, Yarlung Zangbo River N29°13'19.9", E94°12'58.2" 2949 0.3 12.2 7.82 8.2 97.8 mainy sand 25 Jun, 2011 7 Milin County, Yarlung Zangbo River N29°14'21.4", E94°14'54.6" 2945 0.15 8.1 8.2 97.8 mainy sand 25 Jun, 2011 7 Milin County, Yarlung Zangbo River N29°19'22.6", E94°21'15.6" 2936 0.5 15.2 7.88 8.34 164.7 clay and gravel 19.14, 2010 10 Outsin Using Zangbo River N29°19'22.6", E94°21'5.6" 2936 0.5 15.2 7.68 8.34 164.7 clay and sand 25 Jun, 2011 11 Qushui County, Liasa River N29°352.7", E99°360'8.9" 366 0.5 15.3 7.6 8.33 cobbles and day 19.10, 2010 11 Qushui County, Liasa River N29°352.7", E99°560'8.9" 366 0.5 <td>З</td> <td>Qushui County, Yarlung Zangbo River</td> <td>N29°16'24.8", E90°48'56.1"</td> <td>3578</td> <td>0.2</td> <td>18.3</td> <td>6.35</td> <td>8.33</td> <td>215.5</td> <td>clay and stone</td> <td>1 Jul, 2010</td>	З	Qushui County, Yarlung Zangbo River	N29°16'24.8", E90°48'56.1"	3578	0.2	18.3	6.35	8.33	215.5	clay and stone	1 Jul, 2010
5 Milin County, Yarlung Zangbo River N29°13′19.9°, E94°1258.2″ 2949 0.3 122 7.82 8.2 97.8 mainly sand 25 Jun, 2011 6 huther Yarlung Zangbo River N29°1471.4″, E94°1454.6″ 2945 0.15 8.1 8.2 9.7.8 mainly sand 25 Jun, 2011 7 Milin County, Arlung Zangbo River N29°1922.6″, E94°1715.6″ 2936 0.5 15.2 7.08 8.34 164.7 calay and sand 25 Jun, 2011 9 Lhasa Giy, Lhasa River N29°3872.7″, E91°0848.2″ 3660 0.5 18.2 7.6 8.41 21.4 mainly cobbles 19.1 10.1 2010 11 Qushui County, Lhasa River N29°3872.7″, E91°0848.2″ 3660 0.5 16.2 6.38 23 13.4 mainly cobbles 19.1 10.1 2010 11 Qushui County, Lhasa River N29°35771″, E90°509395″ 3618 0.5 16.5 6.14 8.08 13.0 10.1 2010 2011 2010 2010 2055 2016	4	Qushui County, Yarlung Zangbo River	N29°17'09.7", E90°51'37.1"	3587	0.5	17.2	5.89	8.30	216.6	clay and gravel	1 Jul, 2010
6 Milin County, one small stream inflow N297-147.14", E947-143.46" 2945 0.15 8.11 8.92 9.23 26.66 clay and sand 25.1m., 2011 7 Milin County, Arlung Zangbo River N297-1927.6", E947-2115.6" 2936 0.5 15.2 7.08 8.54 16.47 clay and sand 25.1m., 2011 9 Lhasa River N297-9327.8", E910-0848.2" 3660 0.4 18.4 7.5 8.33 233.33 cobles and clay 19.1m., 2010 9 Lhasa River N297-387.7", E910-0848.2" 3660 0.4 18.4 7.5 8.38 10.600 mainly cobles 11.41, 2010 10 Qushui County, Lhasa River N297-387.1", E90°-393.5" 36.1 8.0 16.0.0 mainly cobles 11.41, 2010 11 Qushui County, Lhasa River N297-387.1", E90°-393.5" 36.1 8.18 160.0 mainly cobles 11.41, 2010 12 Qushui County, Lhasa River N297-371.", E90°-393.5" 36.1 8.23 16.6 7.6 8.14 11.41, 2010	S	Milin County, Yarlung Zangbo River	N29°13'19.9", E94°12'58.2"	2949	0.3	12.2	7.82	8.2	97.8	mainly sand	25 Jun, 2011
7 Milin County, Yarlung Zangko River N29°19'22.6", E94°21'15.6" 2936 0.5 15.2 7.08 8.54 164.7 clay and sand 25 Jun, 2010 8 Ihasa City, Lhasa River N29°38'27.8", E91°08'48.2" 3660 0.4 18.4 7.5 8.38 233.3 cobbles and clay 19 Jun, 2010 9 Ihasa City, Lhasa River N29°38'34.0", E91°06'26.3" 3646 0.5 18.2 7.6 8.41 231.4 mainly cobbles 19 Jun, 2010 10 Qushui County, Lhasa River N29°357.1", E90°550'3.9" 367 0.4 19.4 7.5 8.32 175.4 mainly cobbles 11.41, 2010 11 Qushui County, Lhasa River N29°357.1", E90°559'3.5" 365 0.4 19.4 7.6 8.41 231.4 mainly cobbles 11.41, 2010 12 Qushui County, Lhasa River N29°357.1", E90°559'3.5" 365 0.4 19.8 363 10.4 366 14.1 301 37.8 383.7 383.7 383.7 381.4 31.4 31.4	9	Milin County, one small stream inflow to the Yarlung Zangbo River	N29°14'21.4", E94°14'54.6"	2945	0.15	8.1	8.92	9.23	26.6	clay and sand	25 Jun, 2011
8 Ihasa City, Ihasa River N29°387.7, "; E91°08′48.2" 3660 0.4 18.4 7.5 8.3 233.3 cobbles and clay 19 Jun, 2010 9 Ihasa City, Ihasa River N29°3874.0"; E91°06′56.3" 3646 0.5 18.2 7.6 8.41 231.4 mainly cobbles 19 Jun, 2010 10 Qushui County, Ihasa River N29°3874.0"; E90°5238.4" 3609 0.25 16.2 6.38 8.23 175.4 mainly cobbles 19 Jun, 2010 11 Qushui County, Ihasa River N29°3727.1"; E90°5939.5" 3637 0.4 19.0 6.57 7.86 38.37 coarse gravel 1 Jul, 2010 29 Near the first bridge of Linzhi County, N29°352.7", E94°2108.5" 3637 0.4 19.0 6.57 7.86 38.3.7 coarse gravel 1 Jul, 2010 20 Nisang River N29°3456.0"; E94°2108.5" 2967 0.6 12.7 8.34 7.19 38.3.7 coarse gravel 1 Jul, 2010 30 Nisang River N29°3456.0"; E94°2412.9" 2961 0.5 7.	٢	Milin County, Yarlung Zangbo River	N29°19'22.6", E94°21'15.6"	2936	0.5	15.2	7.08	8.54	164.7	clay and sand	25 Jun, 2011
9 Ihasa City, Ihasa River N29°38340", "B91°06'6.3" 364 0.5 18.2 7.6 8.41 231.4 mainly cobbles 19.1m, 2010 10 Qushui County, Ihasa River N29°38340", "B00°25'38.4" 3609 0.25 16.5 6.14 8.08 160.0 mainly cobble 11ul, 2010 11 Qushui County, Ihasa River N29°352.71", "B00°59'39.5" 3618 0.5 16.5 6.14 8.08 160.0 mainly cobble 11ul, 2010 12 Qushui County, Ihasa River N29°352.7", "B40°2108.5" 3617 0.4 19.0 6.57 7.86 383.7 coarse gravel 11ul, 2010 29 Niyang River N29°352.7", "B40°108.5" 2991 - - - - - mainly cobbles 14ul, 2010 30 Niyang River N29°3456.0", E94°210.5" 2957 0.6 12.7 8.54 7.19 38.8 clay and sand 25 Jun, 2011 30 Niyang River N29°3456.0", E94°2548.6" 2957 0.6 12.7 7.96	8	Lhasa City, Lhasa River	N29°38'27.8", E91°08'48.2"	3660	0.4	18.4	7.5	8.38	233.3	cobbles and clay	19 Jun, 2010
10 Qushui County, Lhasa River N29°23'07.0", E90°5608.9" 3618 0.25 16.5 6.14 8.08 160.0 mainly cobble 1 Jul, 2010 11 Qushui County, Lhasa River N29°23'7.1", E90°5608.9" 3618 0.5 16.5 6.14 8.08 160.0 mainly cobble 1 Jul, 2010 29 Near the first bridge of Linzhi County, N29°35'7.1", E90°5939.5" 3637 0.4 19.0 6.57 7.86 38.3.7 coarse gravel 1 Jul, 2010 29 Near the first bridge of Linzhi County, N29°39'52.7", E94°21'08.5" 2991 - - - - - mainly cobbles 1 Jul, 2010 30 Niyang River N29°34'56.0", E94°24'12.9" 2957 0.6 12.7 8.54 7.19 38.8 clay 25 Jun, 2011 31 Niyang River N29°34'56.0", E94°24'8.5" 2957 0.5 12.4 7.59 9.07 70.4 clay and sand 25 Jun, 2011 31 Niyang River N29°34'56.0", E94°24'8.6" 2957 0.5 12	6	Lhasa City, Lhasa River	N29°38'34.0", E91°06'26.3"	3646	0.5	18.2	7.6	8.41	231.4	mainly cobbles	19 Jun, 2010
11 Qushui County, Lhasa River N29°28'42.2", E90°56'08.9" 3618 0.5 6.57 7.86 383.7 coarse gravel 1 Jul, 2010 12 Qushui County, Lhasa River N29°35'27.1", E90°59'39.5" 3637 0.4 19.0 6.57 7.86 383.7 coarse gravel 1 Jul, 2010 29 Near the first bridge of Linzhi County, N29°35'27.1", E90°59'39.5" 3637 0.4 19.0 6.57 7.86 383.7 coarse gravel 1 Jul, 2010 30 Niyang River N29°39'52.7", E94°21'08.5" 2991 - - - - mainly cobbles 26 Jun, 2011 30 Niyang River N29°34'56.0", E94°24'12.9" 2967 0.6 12.7 8.54 7.19 38.8 clay clay 25 Jun, 2011 31 Beside the road from Linzhi to Milin, N29°34'56.", E94°2'48.6" 2956 0.5 12.4 7.59 9.07 70.4 clay and sand 25 Jun, 2011 32 Niyang River N29°3'56.6", E94°2'4'8.6" 2956 0.5 12.4 <t< td=""><td>10</td><td>Qushui County, Lhasa River</td><td>N29°23'07.0", E90°52'38.4"</td><td>3609</td><td>0.25</td><td>16.2</td><td>6.38</td><td>8.23</td><td>175.4</td><td>mainly cobble</td><td>1 Jul, 2010</td></t<>	10	Qushui County, Lhasa River	N29°23'07.0", E90°52'38.4"	3609	0.25	16.2	6.38	8.23	175.4	mainly cobble	1 Jul, 2010
12 Qushui County, Lhasa River N29°3527.1", E90°5939.5" 3637 0.4 19.0 6.57 7.86 383.7 coarse gravel 1 Jul, 2010 29 Near the first bridge of Linzhi County, N29°352.7", E94°2108.5" 2991 - - - - mainly cobbles 26 Jun, 2011 30 Niyang River Niyang River - - - - - 2957 0.6 26 Jun, 2011 31 Niyang River N29°3475.0", E94°2112.9" 2967 0.6 12.7 8.54 7.19 38.8 clay 25 Jun, 2011 31 Niyang River N29°3475.0", E94°2748.6" 2950 0.5 12.4 7.59 9.07 70.4 clay and sand 25 Jun, 2011 32 Niyang River Niyang River 7.59 9.07 70.4 clay and sand 25 Jun, 2011 32 County, Niyang River N29°3726.6", E94°2248.6" 2950 0.5 12.4 7.59 9.07 70.4 clay and sand 34 Iniste second bridge of Linzhi	11	Qushui County, Lhasa River	N29°28'42.2", E90°56'08.9"	3618	0.5	16.5	6.14	8.08	160.0	mainly cobble	1 Jul, 2010
29 Near the first bridge of Linzhi County, Niyang River N29°3952.7", E94°21'08.5" 2991 - - - - - 2 101, 2011 26 Jun, 2011 27 Jun, 2011 27 Jun, 2011 27 Jun, 2011 27 Jun, 2011 26 Jun, 2011 26 Jun, 2011 27 Jun, 2011	12	Qushui County, Lhasa River	N29°35'27.1", E90°59'39.5"	3637	0.4	19.0	6.57	7.86	383.7	coarse gravel	1 Jul, 2010
30 Beside the road from Linzhi to Milin, Niyang River N29°34'56.0", E94°24'12.9" 2967 0.6 12.7 8.54 7.19 38.8 clay 25 Jun, 2011 31 Beside the road from Linzhi to Milin, Niyang River N29°27'06.3", E94°25'48.6" 2950 0.5 12.4 7.59 9.07 70.4 clay and sand 25 Jun, 2011 32 Niyang River Noar the second bridge of Linzhi N29°37'26.6", E94°25'48.6" 3002 0.4 12.5 7.96 8.12 8.13 mainly cobbles 24 Jun, 2011 33 Near the second bridge of Linzhi N29°37'26.6", E94°22'75." 3002 0.4 12.5 7.96 8.12 8.13 mainly cobbles 24 Jun, 2011 34 Iakang Village, Linzhi County, the N29°36'09.2", E94°21'40.6" 2966 0.2 13.3 6.15 8.14 145.4 clay 24 Jun, 2011 34 tibutary of Niyang River N29°36'09.2", E94°21'40.6" 2966 0.2 13.3 6.15 8.14 145.4 clay 24 Jun, 2011 35 Lake Yamzhao Yingey Linzhi County, the N29°36'09.2", E94°21'40.6" 2966 0.2 13.3	29	Near the first bridge of Linzhi County, Niyang River	N29°39'52.7", E94°21'08.5"	2991	I	I	Ι	I	Ι	mainly cobbles	26 Jun, 2011
Beside the road from Linzhi to Milin, N29°27'06.3", E94°25'48.6" 2950 0.5 12.4 7.59 9.07 70.4 clay and sand 25 Jun, 2011 Niyang River Niyang River 20°37'26.6", E94°22'37.5" 3002 0.4 12.5 7.96 8.13 81.3 mainly cobbles 24 Jun, 2011 32 County, Niyang River N29°37'26.6", E94°22'37.5" 3002 0.4 12.5 7.96 8.13 81.3 mainly cobbles 24 Jun, 2011 34 Jiakang Village, Linzhi County, the N29°36'09.2", E94°21'40.6" 2966 0.2 13.3 6.15 8.14 145.4 clay 24 Jun, 2011 36 Lake Yamzhao Yumco N29°6'42.4", E90°40'45.9" 4441 5.3 10.6 7.54 9.07 2375 mainly silt 23 Jun, 2010	30	Beside the road from Linzhi to Milin, Niyang River	N29°34'56.0", E94°24'12.9"	2967	0.6	12.7	8.54	7.19	38.8	clay	25 Jun, 2011
32 Near the second bridge of Linzhi N29°37′26.6″, E94°2227.5″ 3002 0.4 12.5 7.96 8.12 81.3 mainly cobbles 24 Jun, 2011 34 Jiakang Village, Linzhi County, the tributary of Niyang River N29°35(09.2″, E94°21′40.6″ 2966 0.2 13.3 6.15 8.14 145.4 clay 24 Jun, 2011 36 Lake Yamzhao Yumco N29°06′42.4″, E90°40′45.9″ 4441 5.3 10.6 7.54 9.07 2375 mainly silt 23 Jun, 2010	31	Beside the road from Linzhi to Milin, Niyang River	N29°27'06.3", E94°25'48.6"	2950	0.5	12.4	7.59	9.07	70.4	clay and sand	25 Jun, 2011
34 Jiakang Village, Linzhi County, the N29°36'09.2", E94°21'40.6" 2966 0.2 13.3 6.15 8.14 145.4 clay 24 Jun, 2011 36 tributary of Niyang River N29°06'42.4", E90°40'45.9" 4441 5.3 10.6 7.54 9.07 2375 mainly silt 23 Jun, 2010	32	Near the second bridge of Linzhi County, Niyang River	N29°37'26.6", E94°22'27.5"	3002	0.4	12.5	7.96	8.12	81.3	mainly cobbles	24 Jun, 2011
36 Lake Yamzhao Yumco N29°06'42.4", E90°40'45.9" 4441 5.3 10.6 7.54 9.07 2375 mainly silt 23 Jun, 2010	34	Jiakang Village, Linzhi County, the tributary of Niyang River	N29°36'09.2", E94°21'40.6"	2966	0.2	13.3	6.15	8.14	145.4	clay	24 Jun, 2011
	36	Lake Yamzhao Yumco	N29°06'42.4", E90°40'45.9"	4441	5.3	10.6	7.54	9.07	2375	mainly silt	23 Jun, 2010

TABLE 1. Sampling sites (comp. Fig. 1), with locality data, geographical coordinates, altitude (A), water depth (WD), water temperature (WT), dissolved oxygen (DO), pH, atr. ith. . o t 1 v بر ب Ę واعوطم 12 h nte statio 400 4 date Mis line -c 40 ÷ f. -otivity ÷

TAL	3LE 1 . (Continued)									
L	Collection locality: nearest town and	Geographical coordinates	Α	WD	ΜT	DO	На	COND	Sediment	Samuling date
2	waterbody	ucugi apiricar coordinates	(m)	(m)	(°C)	(mg/L)	IIId	(µS/cm)	IIIIIIII	Jampinig uaw
37	Lake Yamzhao Yumco	N29°00'18.1", E90°42'22.6"	4441	35.8	10.8	7.34	8.91	2372	mainly silt	23 Jun, 2010
38	Lake Yamzhao Yumco	N29°01'56.0", E90°41'32.5"	4441	33.2	11.4	7.33	8.89	2379	mainly silt	23 Jun, 2010
39	Lake Yamzhao Yumco	N29°04'18.3", E90°40'55.3"	4441	34.7	11.7	7.12	9.03	2372	mainly silt	23 Jun, 2010
40	Lake Yamzhao Yumco	N29°06'28.4", E90°41'04.9"	4441	38.4	12.2	7.26	9.05	2367	mainly silt	23 Jun, 2010
41	Lake Yamzhao Yumco	N29°08'10.0", E90°40'14.9"	4441	34.2	12.3	7.50	8.96	2377	mainly silt	23 Jun, 2010
42	Lake Yamzhao Yumco	N29°09'18.0", E90°38'37.5"	4441	36.3	12.0	7.10	8.91	2380	mainly silt	23 Jun, 2010
43	Lake Yamzhao Yumco	N29°10'00.7", E90°37'36.6"	4441	33.3	12.1	7.29	8.90	2375	mainly silt	23 Jun, 2010
44	Lake Yamzhao Yumco	N29°11'03.1", E90°35'51.7"	4441	28	11.5	7.33	9.07	2387	mainly silt	23 Jun, 2010
45	Lake Yamzhao Yumco	N29°10'41.2", E90°33'44.7"	4441	38.1	11.8	7.19	9.12	2384	mainly silt	24 Jun, 2010
46	Lake Yamzhao Yumco	N29°09'51.8", E90°31'33.9"	4441	31.2	12.5	7.58	9.13	2376	mainly silt	24 Jun, 2010
47	Lake Yamzhao Yumco	N29°08'44.1", E90°29'19.0"	4441	26.2	13.2	6.83	9.08	2363	mainly silt	24 Jun, 2010
48	Lake Yamzhao Yumco	N29°07'49.1", E90°27'15.5"	4441	25.0	13.6	6.96	8.94	2359	mainly silt	24 Jun, 2010
49	Lake Yamzhao Yumco	N29°06'18.6", E90°25'01.6"	4441	19.8	14.2	6.86	8.89	2362	mainly silt	24 Jun, 2010
50	Lake Yamzhao Yumco	N29°05'18.8", E90°22'39.3"	4441	12.8	14.8	6.76	9.06	2340	mainly silt	24 Jun, 2010
51	Lake Yamzhao Yumco	N29°04'15.4", E90°23'57.2"	4441	16.7	14.3	6.75	9.04	2343	mainly silt	24 Jun, 2010
52	Small stream inflow to Lake Yamzhao Yumco	N29°05'54.9", E90°22'32.4	4441	0.3	13.0	6.63	10.8	305.4	coarse gravel	30 Jun, 2010
53	Small stream inflow to Lake Yamzhao Yumco	N29°07'16.2", E90°26'01.9"	4441	14.2	0.3	7.3	9.91	372.2	fine gravel and silt	30 Jun, 2010
54	Small lake beside Lake Namco	N30°46'33.6", E90°57'36.7"	4708	7.0	4.4	6.68	9.12	4203	I	27 Jun, 2010
56	Littoral Lake Namco	N30°47'17.3", E90°58'32.7"	4729	0.3	10.7	7.5	9.25	1853	cobbles and coarse gravel	2 Jul, 2011
57	Littoral Lake Namco	N30°47'12.6", E90°58'43.9"	4716	0.3	10.0	7.48	10.4	1783	coarse gravel and sand	2 Jul, 2011
59	Small pond beside Lalu Wetland	N29°40'09.6", E91°04'53.2"	3563	0.3	18.4	3.74	7.26	224.0	silt	19 Jun, 2010
60	The small river beside Lalu Wetland	N29°39'53.3", E91°04'51.4"	3650	0.2	19.6	6.56	7.76	248.1	cobbles and gravel	19 Jun, 2010
61	Small pond beside Lalu Wetland	N29°39'58.1", E91°04'50.7"	3584	0.6	17.6	2.56	8.76	193.1	silt	21 Jun, 2011
62	The small river beside Lalu Wetland	N29°39'52.5", E91°04'49.5"	3650	0.3	14.8	7.31	8.80	186.4	silt and gravel	21 Jun, 2011

Lake Namco. The lake covers an area of 1961.5 km² at a water level of 4,718 m asl, with a maximum length of 78.6 km and a maximum width of 50.0 km. The maximum depth is 95 m and the mean depth is 59.6 m. Shoreline development (D_l) equals 2.05. The annual mean air temperature around the lake area is 1.3 °C. Mean annual precipitation is 486.9 mm, and mean evaporation is 975.0 mm. The lake receives surface runoff from the catchment (8648.5 km²) through many streamlets, and the recharge coefficient is 5.53 (Wang & Dou 1998; Kang *et al.* 2010). Five stations (ST54–ST58) in the southeast of the lake were sampled.

Lalu Wetland, located north of Lhasa City, is the highest natural wetland in the world (3,584 m asl), covering 12.2 km². Four samples (ST59–ST62) were taken from a pond and a river.

Methods of investigation

Benthic samples were collected with a weighted Petersen grab $(1/16 \text{ m}^2)$ in lakes, and a D-frame dip net (mesh size 250 µm, collecting area about 0.3 m ×5 m) in rivers. Three samples were taken at each station. Large worms were sorted manually in a white porcelain dish, while small ones were sorted under a dissecting microscope. Specimens were preserved in 10% formalin. Preserved specimens were examined first in temporary glycerine mounts, then stained with borax carmine, dehydrated in an alcohol series, cleared in xylene and mounted in Canada balsam. Measurements of body and chaetae were made on glycerine mounts. Other dimensions were measured on the permanent mounts. Drawings were made with a camera lucida. The types and other specimens are deposited in the Institute of Hydrobiology (IHB), Chinese Academy of Sciences, Wuhan, China.

Abbreviations used in the figures. Roman numerals = segment number; at = atrium; cs = copulatory sac; pe = penis; pr = prostate gland; ps = penial sheath; sa = spermathecal ampulla; sd = spermathecal duct; sf = sperm funnel; vd = vas deferens

Results, systematic account

Family Naididae

Subfamily Naidinae

1. *Chaetogaster diaphanus* (Gruithuisen, 1828) (Figure 2)

Chaetogaster diaphanus (Gruithuisen). Chen 1940: 29–31; Liang 1964: 643–644, 1979: 274; Wang 2002: 80; Timm & Všivkova 2007: 26; Cui 2008: 60.

Material examined. Lhasa River: ST12, 1 specimen (spm). Niyang River: ST30, 1 spm; ST31, 1 spm; ST32, 1 spm. Lalu Wetland: ST62, 3 spms.

Description of new material. Length 2.4–5.0 mm, width 0.8–1.0 mm, segments 10–15. No eyes. Prostomium inconspicuous. Pharynx developed, with thick muscle layer, pharyngeal glands in II–IV. Oesophagus narrow in IV. Stomach in V–VI, and dilatation sudden in V. Stomachal plexus forming transverse ducts only anteriorly. No dorsal chaetae. Ventral chaetae (Fig. 2A–C) of II 9 per bundle, 225–238 μ m long, about 4.5 μ m thick, upper prong longer than lower, with distal or median nodulus; from III on 7–11 per bundle, 174–221 μ m long, about 3 μ m thick, upper prong curved, longer and thinner than lower, with almost median nodulus. Penial chaetae (Fig. 2D–F; Fig. 2G, pc) 7 per bundle, about 112 μ m long, 4 μ m thick, simple-pointed or with 2–3 short fine teeth, with distal nodulus. Male pores paired in line with ventral chaetae, middle VI. Spermathecal pore paired in line with ventral chaeta, anterior to mid-V. Clitellum in 1/2V–VI. Male genitalia paired in V–VI. Male funnel (Fig. 2G, sf) cup-shaped, 80 μ m long, 84 μ m wide, with 12.5 μ m thick wall. Vasa deferentia (Fig. 2G, vd) short, 28 μ m wide, joining atria apically. Atrial ampulla (Fig. 2G, at) large, round, 168 μ m long, 144 μ m in diameter, 17.5–22.5 μ m thick wall, with sperm masses (Fig. 2G, sm) in lumina. Spermathecal ampulla (Fig. 2G, sa) pear-shaped, about 75 μ m long, 87 μ m wide, with 10 μ m thick wall, ducts very short.

FIGURE 2. *Chaetogaster diaphanus* (Gruithuisen, 1828). **A–C.** Ventral chaetae (A: VI; B: II; C: posterior). **D–F.** Penial chaetae. **G.** Ventral view of sexual organs in segments IV–VI. Scale bars: A–F 40 μm, G 160 μm.

Remarks. This species is widely distributed in China (Wang & Cui 2007) and has also been recorded from Tibet by Stephenson (1909). The new material conforms to previous descriptions in most aspects except the body width and the number of penial chaetae (Chen 1940; Sperber 1948; Timm 1999). The new specimens are thicker than previously collected material from China (Liang 1964), but within the range given by Timm (2009) for European specimens. In our specimens there are usually 7 penial chaetae per bundle, whereas in previous descriptions there are only 3–5 per bundle (Chen 1940; Sperber 1948; Liang 1964; Brinkhurst & Jamieson 1971; Timm 1999).

2. Dero digitata (Müller, 1773)

Dero digitata (Müller). Chen 1959: 25; Liang 1979: 275; Wang 2002: 92–93; Cui 2008: 63. *Dero limosa* Leidy. Chen 1940: 52–55.

Material. Lalu Wetland: ST61, 3 spms.

Remarks. First record from Tibet. This species is most likely a cosmopolitan species, with records from every continent except Antarctica (Brinkhurst & Jamieson 1971).

3. Uncinais uncinata (Ørsted, 1842)

Uncinais uncinata (Ørsted). Sokolskaya 1961: 79-89; He 2011: 66.

Material. Yarlung Zangbu River: ST7, 10 spms. Niyang River: ST30, 4 spms.

Remarks. First record from Tibet; also recorded in areas of northern China, such as Helongjiang, Xinjiang, Qinhai and Guizhou (Wang & Cui 2007). This species is widely distributed in Europe and middle Asia (Brinkhurst & Jamieson 1971).

4. Stylaria lacustris (Linnaeus, 1767)

Stylaria lacustris (Linnaeus). Chen 1959: 23; Liang 1962: 20. *Stylaria proboscidea* (Müller). Chen 1940: 44–46.

Material. Lhasa River: ST9, 11 spms; Niyang River: ST29, 2 spms; ST31, 4 spms; ST32, 15 spms. Lalu Wetland: ST61, 22 spms.

Remarks. First record from Tibet; recorded in areas of northern China, such as Helongjiang, Xinjiang, and Guizhou (Wang & Cui 2007; Mezzanotte 2008). This species is widely distributed in Europe, west Asia and North America (Brinkhurst & Jamieson 1971; Wetzel *et al.* 2006).

5. Stylaria fossularis Leidy, 1852

Stylaria fossularis Leidy. Chen 1940: 44-46, 1959: 23; Liang 1962: 19, 1979: 274-275; Wang 2002: 88; Cui 2008: 62.

Material. Lhasa River: ST8, 12 spms. Lalu Wetland: 61, 8 spms. Remarks. Cosmopolitan (Brinkhurst & Jamieson 1971). First record from Tibet.

6. Nais simplex Piguet, 1906

Nais simplex Piguet. Liang 1964: 645–646, 1979: 274. *Nais barbata* Müller. Liang 1962: 16–17.

Material. Lhasa River: ST8, 2 spms; ST9, 1 spm; ST10, 5 spms.Remarks. Cosmopolitan (Brinkhurst & Jamieson 1971). First record from Tibet.

7. Nais barbata Müller, 1773

Nais barbata Müller. Liang 1964: 646.

Material. Lhasa River: ST8, 3 spms; ST9, 1spm; Niyang River: ST29, 4 spms; ST32, 2 spms; ST34, 6 spms; Lalu Wetland: ST61, 4 spms.

Remarks. First record from Tibet; also recorded from Xinjing, China (Wang & Cui 2007). This species is distributed in Europe, Asia and North America (Brinkhurst & Jamieson 1971, Wetzel *et al.* 2006).

8. Nais elinguis Müller, 1773

(Figure 3)

Nais elinguis Müller. Liang 1964: 644–645. *Nais barbata* Müller. Liang 1962: 16–17.

Material. Lhasa River: ST8, 5 spms (2 balsam mounts); ST9, 2 spms; ST11, 4 spms; ST17, 11 spms; ST61, 1 spm; ST62, 12 spms.

Description of new material. Length 2.6–3.2 mm, 13–18 segments. Eyes present. Stomachal dilatation gradual in VII–VIII. Ventral chaetae of II–V 4–5 per bundle, 90–98 μ m long, with nodulus slightly distal or median, from III on 2–5 per bundle, 82–88 μ m long, with nodulus distal. Distal tooth of all ventral chaetae 2–3 times as long as proximal. Dorsal chaetae beginning in VI, hairs 1–3 per bundle, 275–350 μ m long, needles (Fig. 3A) with two teeth about 4 μ m long, distal tooth slightly longer than proximal tooth. Penial chaetae (Fig. 3B; Fig. 3C, ps) 5 per bundle, 102–110 μ m long, 4 μ m width, with a simple distal hook. Vas deferens (Fig. 3C, vd) short, wholly surrounded by abundant prostate gland (Fig. 3C, pr) cells, joining atria subapically. Atrial ampulla (Fig.

3C, at) ovoid, with a thick wall. Spermathecae (Fig. 3C, sa) paired in V, pear-shaped, duct short, spermatozeugmata absent.

Remarks. Cosmopolitan. The characters of the new material agree with previous descriptions (Sperber 1948; Timm 1999). Specimens are redescribed here because this is the first record of sexually mature individuals of this species from China. First record from Tibet.

FIGURE 3. *Nais elinguis* Müller, 1774. **A.** Needle chaeta. **B.** Penial chaeta. **C.** Ventral view of sexual organs in segments V–VI. Scale bars: A–B 20 µm, C 40 µm.

9. Nais bretscheri Michaelsen, 1899

Nais bretscheri Michaelsen. Liang 1962: 17-18, 1964: 644; Wang 2002: 85; Cui 2008: 61; [non] Chen 1940: 35-36.

Material. Yarlung Zangbu River: ST5, 5 spms. Lhasa River: ST8, 4 spms; ST9, 2 spms; ST10, 11 spms; ST11, 3 spms. Niyang River: ST31, 1 spm; ST32, 3 spms; Lake Yamzhao Yumco: ST53, 14 spms.

Remarks. Cosmopolitan. First record from Tibet.

10. Nais communis Piguet, 1906

Nais communis Piguet. Chen 1940: 33-34; Liang 1964: 644, 1979: 274; Wang 2002: 83-84; Cui 2008: 61.

Material. Yarlung Zangbu River: ST5, 2 spms. Lhasa: ST8, 3spms; ST9, 1spm; ST10, 9 spms; ST11, 7 spms; ST12, 6 spms; Niyang River: ST29, 5 spms; ST32, 3 spms; Lake Nmco: ST57, 12 spms. Lalu Wetland: ST60, 13 spms.

Remarks. Cosmopolitan. First record from Tibet.

11. Nais pardalis Piguet, 1906

Nais pardalis Piguet. Liang 1958: 43, 1964: 644, 1979: 274; Brinkhurst, Qi & Liang 1990: 906–907; Wang 2002: 85–86; Cui 2008: 62.

Nais bretscheri Michaelsen. Chen 1940: 35–36.

Material. Yarlung Zangbu River: ST5, 8 spms. Lhasa River: ST8, 12 spms; ST9, 3spms; ST10, 14 spms; Lake Yamzhao Yunmco: ST53, 4 spms. Lalu Wetland: ST59, 20 spms; ST60, 9 spms; ST62, 12 spms.
Remarks. Cosmopolitan. First record from Tibet.

12. Nais variabilis Piguet, 1906

Nais variabilis Piguet. Liang 1958; Chen 1959: 27; Wang 2002: 84; Cui 2008: 61. *Nais communis* Piguet.Chen, 1940: 33–34.

Material. Yarlung Zangbu River: ST2, 2 spms; ST5, 7 spms; Niyang River: ST29, 12 spms; ST30, 4 spms; ST32, 4 spms.

Remarks. Cosmopolitan. First record from Tibet.

13. Nais longidentata sp. n.

(Figures 4, 5; Table 2)

Holotype. IHB NMC20110702a, mature specimen mounted in Canada balsam, and stained with borax carmine.

Type locality. ST57, N 30°47'12.6", E 90°58'43.9", Lake Namco of Tibet, ca. 4,716 m asl, lake shore substrate type coarse gravel and sand; water depth 0.3 m, water temperature 10.0°C, dissolved oxygen 7.48 mg/L, pH 10.42, conductivity 1,783 μ S/cm. 2 July 2011, collected by X. B. He, Y. D. Cui.

FIGURE 4. *Nais longidentata* **n. sp. A–C.** Ventral chaetae (III, VI, posterior, respectively). **D.** Needles. **E.** Penial chaetae. **F.** Lateral view of sexual organs in segments V–VI. Scale bar: A–D 20 μm; E 50 μm, F 100 μm.

FIGURE 5. SEM (A–E) and optical microscope (F) micrographs of *Nais longidentata* **n. sp. A–B.** Ventral chaetae in IX (A) and XIII (B). **C.** Hair in VII. **D–E.** Needles in X (D) and a posterior segment (E). **F.** Lateral view of anterior body. Scale bars: A,B, D 20µm, C 5µm, E 10 µm.

(2014).							
Species	N. longidentata sp. n.	N. bretscheri Michaelsen, 1899	<i>N. communis</i> Piguet, 1906	N. elinguis Müller, 1774	N. pardalis Piguet, 1906	N. variabilis Piguet, 1906	N. badia Peng et al., 2014
Length (mm)	4.3–5.7	3–7	1.8–12	2.2–12	2.5-7.0	3-10	4.2 - 9.1
Segment number	34–39	19–34	12–32	15-37	19–32	18–38	24–54
Ventral chaetae II-V	3-5	2–7	26	2-5	2-5	2-7	7-8
Ventral chaetae from VI	4-5	1–6, with giant chaeta	2–6	2-5	1–5, with thick chaeta	2-7	2-7
Hairs	(0)1, serrate	1-2	1–2	1 - 3	1-2	1-2	1-3, serrate
Needles number	1–2	1–2	1–2	1–3	1–2	1–2	2-3, pectinate
Needle tip		2	۶	5		<u>></u>	7
Stomachal dilatation	Sudden	Gradual	Gradual	Gradual	Sudden	Sudden	Sudden
Vasa deferentia	Completely surrounded by strong gland cells	With prostate gland	Thick, with gland cells only on posterior part	Long, curved, wholly surrounded by abundant gland cells	Surrounded by gland cells in front of atria	Completely surrounded by strong gland cells	Surrounded by gland cells only on posterior part
Penial chaetae	ю	2	2–3	45	ß	2–3	4
Swimming type	No swimming	No swimming	No swimming	Lateral movements	Spiral movements	Spiral movements	Wave-like movements
Distribution	Tibet, China	Cosmopolitan	Cosmopolitan	Cosmopolitan	Cosmopolitan	Cosmopolitan	Southern Tibet, China

TABLE 2. Comparison of Nais longidentate sp. n. with allied species. Data from Sperber (1948). Liang (1964). Brinkhurst & Jamieson (1971). Semernov (2004). Peng et al.

Paratypes. IHB NMC20110702b–e, 4 specimens from the type locality mounted in Canada balsam, and stained with borax carmine.

Other material. More than 50 immature specimens from ST5, ST9, ST31, ST53, ST57, preserved in 10% formalin, collected by X. B. He, Y. D. Cui.

Etymology. The specific name "*longidentata*" is Latin for "with long teeth", and refers to the needle with two long teeth.

Description. Length 3.3–7.4 mm (holotype 4.3 mm), width at VI 0.3–0.6 mm (holotype 0.5 mm), segments 34–41(holotype 34). Prostomium conical. Eyes present, body pigment absent. Pharynx in II–III. Stomach in VII–VIII, dilatation sudden in VII, no elongate cells. Clitellum inconspicuous. Coelomocytes abundant. No swimming.

Dorsal chaetae from VI onwards (Fig. 5F). Hairs (0)1–2 per bundle, 225–450 µm long, with faint serration (Fig. 5C). Needles 1–2 per bundle, 92–112 µm long, with two long parallel teeth (10.0–13.8 µm long), distal tooth slightly thinner and shorter than proximal, or subequal; nodulus ca. 2/5 from distal end (Fig. 4D, Fig. 5D–E). Ventral chaetae of II–V 3–4 per bundle, 78–84 µm long, distal tooth longer and thinner than proximal, with median or slightly distal nodulus, hardly longer and thinner than the rest. Ventral chaetae from VI 2–5 per bundle, 68–78 µm long, distal tooth slightly longer than proximal, with 1–3 fine intermediate teeth, nodulus 2/5 from distal end (Fig. 4A–C; Fig. 5A–B). Penial chaetae (Fig. 4E) 3 per bundle, 70–112 µm long, 4 µm thick, simple-pointed. Male pores paired in segment VI. Spermathecal pores paired in segment V.

Clitellum in V–VI. Male genitalia paired in V–VI. Vasa deferentia (Fig. 4F, vd) 90–100 μ m long, 8–9 μ m wide, completely surrounded by abundant prostate gland cells (Fig. 4F, pr), joining the atria subapically. Atrial ampullae large and round, 120 μ m in length, 45 μ m in diameter, wall 5 μ m thick (Fig. 4F, at). Spermathecal ampulla pear-shaped, 90 μ m long, 50 μ m wide, with distinct duct 60–70 μ m long, 9–10 μ m wide (Fig. 4F, sp).

Distribution. Known only from Lake Nam Co and Lake Yamzho Yumco of Tibet.

Remarks. Considering the characters such as the presence of eyes, coelomocytes abundant, dorsal chaetae from VI with hairs and double-pronged needles, ventral chaetae of II–V longer and thinner than the rest, pharynx in II–III, stomach beginning in VII, spermathecae with distinct ducts, vasa deferentia with prostate gland cells joining the atria subapically, atria without prostate glands, penial chaetae present with a simple hook, we think that the new species fits the definition of *Nais* Müller, 1773 (Sperber 1948; Brinkhurst & Jamieson 1971; Hrabě 1979; Timm 1999; Envall *et al.* 2012).

About 31 species have been described in *Nais*, and ten species are distributed in China (Sperber 1948; Liang 1964; Brinkhurst & Jamieson 1971; Semernoy 2004; Envall *et al.* 2012; Peng *et al.* 2014). *N. longidentata* **sp. n.** is distinguished from congeners in having long and parallel needle teeth, faintly serrated hairs, and pectinate ventral chaetae with 1–2 intermediate teeth.

Comparing *N. longidentata* **sp. n.** with allied species (Table 2), the new species is similar to *N. elinguis* by the long and parallel needle teeth. However, the needles of the new species are longer than those of *N. elinguis* (10.0–13.8 µm vs. 3.1–4.6 µm). *N. badia* Peng *et al.*, 2014 resembles the new species in serrate hairs and pectinate ventral chaetae, but its large area of reddish brown pigment in I–VIII, wave-like body movements, and vasa deferentia with prostate gland cells only on their posterior parts are significantly different from *N. longidentata* **sp. n.**. Among further similar species, *N. bretscheri* Michaelsen, 1899 differs from the new species in giant chaetae in some anterior ventral segments; *N. communis* Piguet, 1906 differs in the thick prostate gland cells only on their posterior parts; *N. variabilis* Piguet, 1906 and *N. pardalis* Piguet, 1906 swim with spiral body movements and their stomach has elongate cells. In all these species the needle teeth are considerably shorter than in *N. longidentata* **sp. n.**.

14. Pristina jenkinae (Stephenson, 1931)

Pristina jenkinae (Stephenson). Liang 1964: 649–650; Cui 2008: 66. *Pristinella jenkinae* (Stephenson). Wang 2002: 105–106.

Material. Niyang River: ST32, 3 spms. Remarks. First record from Tibet.

15. Paranais frici Hrabě, 1941

Paranais frici Hrabě. Erséus 1990: 116–117, Wang 2002: 82; Cui 2008: 60–61. Paranais mobilis Liang. Liang 1958: 43–44; Chen 1959: 27.

Material. Yarlung Zangbu River: ST5, 2 spms.

Remarks. First record from Tibet. This species has previously been found to be widespread in brackish water (Erséus 1990), but thus far has not been found in the brackish lakes of Tibet.

Subfamily Rhyacodrilinae

16. Rhyacodrilus stephensoni Černosvitov, 1942

(Figure 6)

Rhyacodrilus stephensoni Černosvitov, 1942: 284–285, Liang & Xie 1992: 196–197.

Material. 1 spm, whole-mounted in Canada balsam, from ST59, 4 specimens in 10% formalin from ST59 and ST61.

Description. Length 7.8 mm, width in X 0.37 mm, 35 segments. Coelomocytes abundant. Prostomium cylindrical. Pharynx in III–IV. No hairs. Chaetae bifid, distal tooth shorter or equal to proximal, nodulus distal. Chaetae (Fig. 6B) of anterior segments 3–4 per bundle, posteriorly 2–4 (3) per bundle. Vas deferens (Fig. 6C, vd) short, 22.5 μ m in diameter, wall 7.5 μ m thin, attached to atrium subapically. Atrium (Fig. 6C, at) oval-like, ampulla thickly covered with diffuse unicellular prostate gland (Fig. 6C, pr). Pseudopenes (Fig. 6C, pe) present, 35 μ m in diameter. Spermathecae (Fig. 6C, sa) oval-shaped, walls of ampulla 7.5–12.5 μ m thin. Duct (Fig. 6C, sd) short, 35 μ m long, 47.5 μ m in diameter, 20 μ m in its thick wall. Spermathecal chaetae unmodified, 4 per bundle, penial chaetae (Fig. 6A) straight, bifid, with a very short distal tooth, 3 per bundle.

FIGURE 6. *Rhyacodrilus stephensoni* Černosvitov, 1942. **A.** Spermathecal chaeta. **B.** Dorsal chaeta. **C.** Lateral view of male duct and spermatheca in segments X–XI. Scale bars: A–B 20 μm, C 80 μm.

Remarks. This species was recorded by Stephenson (1909) for the first time as *Limnodrilus* sp. in Tibet, and then Černosvitov (1942) redescribed it, recognized it as a new species, and transferred it to the genus *Rhyacodrilus*. This species is also distributed in terrestrial habitats of Tianmu Mountain in Zhejiang Province (Liang & Xie 1997).

17. Branchiura sowerbyi Beddard, 1892

Branchiura sowerbyi Beddard. Chen 1940: 90–96, 1959: 19; Liang 1962: 22, 1979: 276–277; Brinkhurst, Qi & Liang 1990: 912; Wang 2002: 132–131; Cui 2008: 107–108.

Material. Yarlung Zangbu River: ST5, 3 spms. Niyang River: ST30, 2 spms; ST32, 5 spms. Lake Yamzhao Yumco: ST52, 4 spms. Lalu Wetland: ST59, 5 spms; ST60, 5 spms.

Remarks. Cosmopolitan species. First record from Tibet.

Subfamiliy Tubificinae

18. Limnodrilus hoffmeisteri Claparède, 1862

Limnodrilus hoffmeisteri Claparède. Chen 1940: 109–114; Sokolskaya 1961: 86; Liang 1962: 24–25; Wang 2002: 109–110; Cui 2008: 68.

Limnodrilus pacificus Chen, 1940: 118.

Material. Yarlung Zangbu River: ST1, 4 spms; ST2, 10 spms; ST3, 20 spms; ST4, 7 spms; ST5, 12 spms; ST6, 23 spms; ST7, 9 spms. Lhasa River: ST8, 20 spms; ST9, 11 spms; ST10, 15spms; ST11, 7 spms; ST12, 2 spms. Niyang River: ST29, 9 spms; ST30, 2 spms; ST32, 10 spms; ST34, 7 spms. Yamzhao Yumco: ST38, 1 spm; ST53, 12spms; ST54, 5 spms. Lake Namco, ST56, 2 spms; Lalu Wetland: ST59, 7 spms; ST60, 4 spms; ST61, 12 spms; ST62, 22 spms.

Remarks. Cosmopolitan. First record from Tibet.

19. Limnodrilus claparedeianus Ratzel, 1868

Limnodrilus claparedianus Ratzel. Chen 1940: 116–118. Limnodrilus claparedeianus Ratzel. Liang 1987: 196; Wang 2002: 110–111; Cui 2008: 68.

Material. Yarlung Zangbu River: ST2, 3 spms; ST3, 4 spms. Remarks. Cosmopolitan. First record from Tibet.

20. Limnodrilus profundicola (Verrill, 1871)

(Figure 7)

Limnodrilus helveticus Piguet. Liang 1962: 23–24. *Limnodrilus profundicola* (Verrill). He 2011: 107–108.

Material. Lake Yamzhao Yumco, shoreline, ST53, 1 mature specimen, mounted in Canada balsam (dissected). In 10% formalin: Yarlung Zangbu River, ST1, 2 spms; ST2, 1 spm. Lake Namco, ST56, 2 spms.

Description. Length 19 mm, width 1.0 mm anteriorly, 0.5 mm posteriorly, 57 segments. Prostomium conical. Coelomocytes absent. No hairs. Ventral and dorsal chaetae all the same shape, distal teeth shorter or equal to proximal, nodulus distal. In anterior segments dorsally and ventrally 6–9 and 6–11 chaetae per bundle, respectively, 4–7 per bundle posteriorly. Vasa deferentia (Fig. 7B, vd) long, 23–30 μ m wide, 5–8 μ m wall thick, with cilia. Atrium (Fig. 7B, at) of fusiform shape, 55 μ m wide, 238 μ m long, about 4x as wide as long. Prostate gland (Fig. 7B, pr) large, solid, lobulated, attached to middle portion of atrium. Ejaculatory ducts (Fig. 7B, ed) present, 15–25 μ m wide. Penis sheath (Fig. 7B, ps) cylindrical, 65 μ m wide at proximal base, 290 μ m long, 5x as long as wide, thick-walled. Penis sheath widest at proximal base, gradually narrowing distally, narrowest in the middle, slightly wider at the distal top; distal end expanding abruptly to form a head of circular form, which is generally reflected back over the tube. Spermathecae (Fig. 7A, sa) paired in X, pear-shaped. Spermatozeugmata (Fig. 7A, sz) worm-like, 4 of them in ampulla. Duct (Fig. 7A, sd) short, expanded in the middle (Fig. 7A, sv), with fine sperm bundles in the cavity (Fig. 7A, sb).

FIGURE 7. Limnodrilus profundicola (Verrill, 1871). A. Spermatheca. B. Male duct. Scale bar 80 µm.

Remarks. This species was recorded as *Limnodrilus helveticus* in Heilongjiang, Xinjiang, Qinghai Province in China (Liang 1962; Wang & Cui 2007). Following Brinkhurst & Jamieson (1971), *L. helveticus* is a junior synonym of *L. profundicola*; hence the record of *L. helveticus* recorded in Liang (1962) should be changed to *Limnodrilus profundicola*. Our material agrees with previous descriptions (Brinkhurst & Jamieson 1971; Hrabě 1979; Timm 1999), notably in the shape of the penial sheaths, being 5x as long as wide and with mushroom-like distal end. First record from Tibet.

21. Ilyodrilus templetoni (Southern, 1909)

Ilyodrilus templetoni (Southern). Liang, Wang & Xie, 1998: 57-58; Wang, 2002: 112-114; Cui, 2008: 69.

Material. Lhasa River: ST10, 12 spms; ST11, 5 spms; ST12, 6 spms. Lalu Wetland: ST59, 16 spms; ST61, 7 spms. Remarks. Cosmopolitan. First record from Tibet.

22. Tubifex tubifex (Müller, 1774)

Tubifex tubifex (Müller). Liang 1962: 20–22; Wang 2002: 109; Cui 2008: 67. *Tubifex* sp. Yamaguchi 1940: 387–388.

Material. Yarlung Zangbu River: ST1, 3 spms; ST5, 6 spms. Lhasa River: ST10, 12 spms; ST12, 3 spms. Niyang River: ST29, 7 spms; ST30, 1 spm; ST32, 6 spms; ST34, 3 spms. Lake Yamzhao Yumco: ST38, 1 spm; ST52, 2 spms. Lalu Wetland: ST60, 4 spms; ST61, 7 spms; ST62, 2 spms.

Remarks. Cosmopolitan. First record from Tibet.

23. Tubifex conicus He, Cui & Wang, 2012

Tubifex conicus He, Cui & Wang, 2012: 160–162.

Material. Lake Yamzhao Yumco: ST36, 2 spms; ST37, 17 spms; ST39, 45 spms; ST40, 12 spms; ST41, 24 spms; ST42, 6 spms; ST43, 27 spms; ST44, 2 spms; ST47, 36 spms; ST48, 29 spms; ST49, 21 spms.

Remarks. Known only from Lake Yamzhao Yumco.

24. Isochaetides palmatus He, Cui & Wang, 2012

Isochaetides palmatus He, Cui & Wang, 2012: 162-164.

Material. Lake Yamzhao Yunmco: ST36, 9 spms; ST37, 57 spms; ST38, 8 spms; ST39, 55 spms; ST40, 52 spms; ST41, 51 spms; ST42, 64 spms; ST43, 51 spms; ST44, 36 spms; ST45, 97 spms; ST46, 103 spms; ST47, 42 spms; ST48, 57 spms; ST49, 8 spms; ST50, 53 spms; ST51, 7 spms.

Remarks. Known only from Lake Yamzhao Yumco.

Lumbriculidae

25. Lumbriculus variegatus (Müller, 1774)

Lumbriculus variegatus (Müller). Černosvitov, 1942: 281; Chen, 1959: 19 (erroneously as *L. variegatum*); Liang & Xie, 1997: 392; Wang & Liang, 2001: 32; Wang, 2002: 39–40.

Lumbriculus sp. (?) Chen, 1940: 123.

Material. Lhasa River: ST10, 40 spms; ST11, 34 spms. Niyang River: ST30, 12 spms; ST32, 22 spms; ST34, 4 spms; Lalu Wetland: ST59, 8 spms; ST61, 10 spms.

Remarks. Numerous specimens were collected, but mature specimens were not found.

Discussion

With this study, there are 30 species of aquatic oligochaetes belonging to 2 families and 15 genera recorded from Tibet. Three species recorded in previous studies (Stephenson 1909; Černosvitov 1942) were not found in this study: *Pristina changtuensis* Liang, 1963, *Limnodrilus udekemianus* Claparède, 1862 and *Aulodrilus limnobius* Bretscher, 1899. In study areas of Tibet, the species diversity in freshwater regions is higher than in brackish lakes, e.g. Lalu wetland, Lhasa River, Niyang River and Yarlung Zangbo River contained 14, 13, 13 and 12 species, respectively, while 9 and 5 species were recorded in Lake Yamzho Yunmco and Lake Namco, respectively, both of which are brackish (Table 1). In this study, we did not find oligochaetes at all in several stations, most of them in rivers with strong current and cobbles as substrate.

With regard to the species composition, the oligochaete fauna of Tibet appears to be dominated by cosmopolitan species (accounting for 17 (57 %) of species). Some species were found at only a small number of stations with distinctive habitats. For example, *Tubifex conicus* and *Isochaetides palmatus* were only sampled from one brackish lake, and *Nais badia* was only found in freshwater wetland. These three species are assumed to have a restricted range and narrow habitat requirements (He *et al.* 2012; Peng *et al.* 2014). In addition, two recorded species, *Pristina changtuensis* and *Rhyacodrilus stephensoni*, are originally known from Tibet; the former is limited to Changdu (Liang 1963) and Hengyan, Henan Province (Wang 2002), the latter has broader habitat tolerances, being capable of surviving in both aquatic and terrestrial habitats (Stephenson 1909; Liang & Xie1992).

The faunal components of the Tibetan Plateau are mostly thought to be of Palearctic and Oriental origin (Yang *et al.* 2009). The study suggests that the Qinghai-Xizang plateau is an independent unit for ichthyo-fauna (Chen *et al.* 1996); the freshwater mollusk fauna seems to be mainly characterized by Palearctic species (Oheimb *et al.* 2011, 2013), and the branchiopod fauna is cosmopolitan and consists of Palearctic species, with few endemic or oriental species (Chiang *et al.* 1983). The Tibetan Plateau is considered as a global biodiversity hotspot, with a unique natural environment (Li & Fang 1999). Extant patterns of diversity and distribution of species throughout the Tibetan Plateau are mainly influenced by extreme geological changes during the plateau's uplift, as well as climate fluctuations especially during the Pleistocene (Yang *et al.* 2009). But the regional freshwater fauna and particularly the oligochaete fauna remains species-poor and scarcely studied. The present study has helped to address this knowledge gap with the description of a new species, and first records from Tibet of 21 additional species. Future studies should focus on faunistic distribution patterns across different regions of the Tibetan Plateau and their vicinities, and expand to phylogenetic and biogeographical work.

Acknowledgements

We are indebted to Prof. Yanling Liang (Institute of Hydrobiology, Chinese Academy of Sciences, China), Prof. Tarmo Timm (Estonian University of Life Sciences, Estonia), and Dr. Nick R. Bond (Australia Rivers Institute, Griffith University, Australia) for their inspired comments on the manuscript. Financial support was provided by National Natural Science Foundation of China (No.31100407; No. 31471962) and the Knowledge Innovation Program of the Chinese Academy of Sciences.

References

Brinkhurst, R.O. & Jamieson, B.G.M. (1971) Aquatic Oligochaeta of the World. Oliver and Boyd, Edinburgh, 860 pp.

Brinkhurst, R.O., Qi, S. & Liang, Y.L. (1990) The aquatic Oligochaeta from the People's Republic of China. *Canadian Journal* of Zoology, 68, 901–916.

http://dx.doi.org/10.1139/z90-131

- Cao, W.X. & Zhu, S.Q. (1988) Two new species of genus *Triplophysa* from Qinghai-Tibet Plateau, China. *Acta Zoologica Sinica*, 13, 201–204. [in Chinese with English abstract]
- Černosvitov, L. (1942) Oligochaeta from Tibet. Proceedings of the Zoological Society of London, 111, 281-287.
- Chen, F. & Chen, Y.F. (2010) Investigation and protection strategies of fishes of Lhasa River. *Acta Hydrobiologica Sinica*, 34, 278–285. [in Chinese with English abstract]
- Chen, Y. (1940) Taxonomy and faunal relations of the limitic Oligochaeta of China. *Contributions from the Biological Laboratory of the Science Society of China*, Zoological Series, 14, 1–132.
- Chen, Y. (1959) Animal Illustration of China-Annelids, including Polychaetes. Science Press, Beijing, 78 pp. [in Chinese]

Chen, Y. (1940) Taxonomy and faunal relations of the limitic Oligochaeta of China. *Contributions from the Biological Laboratory of the Science Society of China*, Zoological Series, 14, 1–132.

Chen, Y.Y., Chen, Y.F. & Liu, H.Z. (1996) Studies on the position of the Qinghai-Xizang Plateau region in zoogeographic divisions and its eastern demarcation line. *Acta Hydrobiologica Sinica*, 20, 97–103.

Chiang, S., Shen, Y. & Gong, X. (1983) Aquatic invertebrates of the Tibetan plateau. Series of the Scientific Expedition to *Qinghai–Xizang Plateau*. Science Press, Beijing, 492 pp. [in Chinese]

- Cui, Y.D. (2008) *Studies on Oligochaeta (Annelida) of Lakes in Yunnan, Southwest China.* PhD Thesis, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 200 pp. [in Chinese with English abstract]
- Envall, I., Gustavsson, L.M. & Erseus, C. (2012) Genetic and chaetal variation in *Nais* worms (Annelida, Clitellata, Naididae). *Zoological Journal of the Linnean Society*, 165, 495–520.

http://dx.doi.org/10.1111/j.1096-3642.2012.00828.x

- Erséus, C. (1990) Marine Oligochaeta of Hong Kong. In: Morton, B. (Ed.), The Marine Flora and Fauna of Hong Kong and Southern China II. Hong Kong University Press, Hong Kong, pp. 259–335.
- Hrabě, S. (1979) The Freshwater Oligochaeta (Annelida) of Czechoslovakia. Acta Universitatis Carolinae Biologica, 1979, 1–167.
- He, X.B. (2011) *Studies on Faunae of Aquatic Oligochaeta (Annelida) in Tibet and Four Large Rivers of China*. PhD Thesis, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 210 pp. [in Chinese with English abstract]
- He, X.B., Cui, Y.D. & Wang, H.Z. (2012) Two new species of Tubificinae (Annelida, Clitellata, Naididae) from Tibet, China. *Zootaxa*, 3458, 159–165.
- Kang, S.C., Yang, Y.P., Zhu, L.P. & Ma, Y.M. (2010) *Modern Environmental Processes and Changes in the Nam Co Basin, Tibetan Plateau.* China Meteorological Press, Beijing, 418 pp. [in Chinese]
- Li, J.J. & Fang, X.M. (1999) Uplift of the Tibetan Plateau and environmental changes. *Chinese Science Bulletin*, 44, 2117–2124.

http://dx.doi.org/10.1007/BF03182692

Liang, Y.L. (1987) Preliminary study of the aquatic Oligochaeta of the Changjiang (Yangtze) River. *Hydrobiologia*, 155, 195–198.

http://dx.doi.org/10.1007/BF00025651

- Liang, Y.L. (1979) Studies on the aquatic Oligochaeta of China III. Aquatic Oligochaeta of the Huama Lake. *Oceanologia et Limnologia Sinica*, 10, 273–281. [in Chinese with English abstract]
- Liang, Y.L. (1964) Studies on the aquatic Oligochaeta of China II. On some species of Naididae from Sinkiang with description of a new species *Allodero prosetosa*. *Acta Zoologica Sinica*, 16, 643–652. [in Chinese with English abstract]
- Liang, Y.L. (1963) Studies on the aquatic Oligochaeta of China I. Descriptions of new naids and branchiobdellids. *Acta Zoologica Sinica* 15, 560–570. [in Chinese with English abstract]
- Liang, Y.L. (1962) On some naids and tubificids from north-eastern China. *Acta Hydrobiologica Sinica*, 2, 14–26. [in Chinese with English abstract]
- Liang, Y.L. (1958) On some new species of Naididae from Nanking including remarks of certain known species. Acta

Hydrobiologica Sinica 1958, 14–58. [in Chinese with English abstract]

- Liang, Y.L. & Xie, Z.C. (1997) Aquatic Oligochaeta from Wuling Mountains area. *In*: Song, D.X. (Ed.), *Invertebrates of Wuling Mountains Area, Southwestern China*. Science Press, Beijing, pp. 383–394. [in Chinese with English abstract]
- Liang, Y.L. & Xie, Z.C. (1992) Chapter 7. Annelida, Mollusca and Tardigrada. 1. Oligochaeta, i. Oligochaeta Plesiopora. *In*: Yin, W.Y. et al., (Eds.), *Subtropical Soil Animals of China*. Science Press, Beijing, pp. 194–201. [in Chinese]
- Liang, Y.L., Wang, H.Z. & Xie, Z.C. (1998) Studies on the aquatic Oligochaeta of China IV, Diagnoses of new records and rare species of Naididae and Tubificidae. *Acta Hydrobiologica Sinica*, 22, 54–61. [in Chinese with English abstract]
- Mezzanotte, E. (2008) Notes on aquatic Oligochaeta in Guizhou Province, China. Research in South China Karst. *Memorie del Museo Civico di Storia Naturale di Verona*, Serie 2 (Monografie Naturalistiche), 3, 89–99.
- Oheimb, P.V., Albrecht, C., Riedel, F., Bössneck, U., Zhang, H. & Wilke, T. (2013) Testing the role of the Himalaya Mountains as a dispersal barrier in freshwater gastropods (*Gyraulus* spp.). *Biological Journal of the Linnean Society*, 109, 526–534. http://dx.doi.org/10.1111/bij.12068
- Oheimb, P.V., Albrecht, C., Riedel, F., Du, L., Yang, J., Aldridge, D.C., Bössneck, U., Zhang, H. & Wilke, T. (2011) Freshwater biogeography and limnological evolution of the Tibetan Plateau Insights from a plateau-wide distributed gastropod taxon (*Radix* spp.). *PLoS ONE*, 6, e26307.
- Peng, Y., Wang, H.Z. & Cui, Y.D. (2014) Two species of Naididae (Annelida, Clitellata) from southern Tibet, China. *ZooKeys*, 444, 59–68.

http://dx.doi.org/10.3897/zookeys.444.8285

Semernoy, V.P. (2004) Oligochaeta of Lake Baikal. Novosibirsk, Nauka, 527 pp. [in Russian]

- Sokol'skaya, N.L. (1961) Material on the fauna of freshwater Microdrili in the Amur Basin based on the joint Soviet-China Amur Expedition 1957–58. *Sbornik Trudov Zoologicheskogo Muzeya MGU*, 8, 79–89. [Moscow]
- Sperber, C. (1948) A taxonomical study of the Naididae. Zoologiska bidrag fran Uppsala, 28, 1–296.
- Stephenson, J. (1909) Report on a collection of smaller Oligochaeta made by Captain, F. H. & Stewart, I. M. S., in Tibet. *Records of the Indian Museum*, 3, 105–114.
- Timm, T. (2009) A guide to the freshwater Oligochaeta and Polychaeta of Northern and Central Europe. *Lauterbornia*, 66, 1–235.
- Timm, T. (1999) A guide to the Estonian Annelida. Estonian Academy Publishers, Tartu-Tallinn, 208 pp.
- Timm, T. & Všivkova, T.S. (2007) Freshwater oligochaetes (Annelida, Clitellata) of Lake Hanka (Russia/China). Acta Hydrobiologica Sinica, 31, 25–35.
- Wang, H.Z. (2002) Studies on taxonomy, distribution and ecology of microdrile oligochaetes of China, with description of two new species from the vicinity of the Great Wall Station of China, Antarctica. Higher Education Press, Beijing, 228 pp. [in Chinese with English abstract]
- Wang, H.Z. & Cui, Y.D. (2007) On the studies of microdrile Oligochaeta and Aeolosomatidae (Annelida) in China: brief history and species checklist. *Acta Hydrobiologica Sinica*, 31 (Supplement), 87–98.
- Wang, H.Z. & Liang, Y.L. (2001) A preliminary study of oligochaetes in Poyang Lake, the largest freshwater lake of China, and its vicinity, with description of a new species of *Limnodrilus*. *Hydrobiologia*, 463, 29–38. http://dx.doi.org/10.1023/A:1013126918728
- Wang, S.M. & Dou, H.S. (1998) Lakes of China. Science Press, Beijing, 580 pp. [in Chinese]
- Wetzel, M.J., Fend, S.V., Coates, K.A., Kathman, R.D. & Gelder S. (2006) Taxonomy, Systematics and Ecology of the Aquatic Oligochaeta and Branchiobdellida (Annelida, Clitellata) of North America, with Emphasis on the Fauna Occurring in Florida: Workbook, Florida Departament of Environmental Protection (FDEP), Tallahassee, Florida, 269 pp.
- Yamaguchi, H. (1940) Oligochaeta of Manchoukuo. In: Kawamura, T. (Ed.), Report of the Limnobiological Survey of Kwantung and Manchoukuo, 382–394. [in Japanese]
- Yang, S.J., Dong, H.L. & Lei, F.M. (2009) Phylogeography of regional fauna on the Tibetan Plateau: A review. Progress in Natural Science, 19, 789–799.

http://dx.doi.org/10.1016/j.pnsc.2008.10.006