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ABSTRACT 

To determine the environmental factors influencing 
phytoplankton chlorophyll a (Chl a), field investigations 
were conducted in three river-connected lakes (Dongting 
Lake, Poyang Lake and Shijiu Lake) of the Yangtze flood-
plain in 2004. Results showed that the average Chl a con-
centration in these lakes ranged from 2.98 to 3.65 mg m-3. 
The major factors influencing Chl a in lentic and lotic re-
gions were total phosphorus (TP) and water velocity (U), 
respectively. Multiple relationships including total nitro-
gen (log10TN) and water depth (log10Z) were established. 
Further analyses found that the absolute Chl a and slope 
of log10Chl a＝f (log10TP) in the river-connected lakes 
were obviously lower than those in the river-isolated lakes. 
This suggests the river-lake connectivity can significantly 
modify relationship between TP and chlorophyll a con-
centration. 
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INTRODUCTION 

Chlorophyll a (Chl a) is widely used as a measure of 
phytoplankton biomass. It has been associated with many 
factors in the former researches. Studies on lentic system, 
e.g. in temperate and subtropical lakes and reservoirs, con-
firmed the strong dependence of Chl a concentration on 
total phosphorus (TP) [1-4]. The nutrient-Chl a relation-
ship was generally a non-linear function with large unex-
plained variations, suggesting that other factors also limit 

algal growth, e.g. physical ones (water depth, water tem-
perature, light), and biotic ones (predation, competition) 
[5, 6]. With regard to lotic system, e.g. in rivers and their 
associated waters, Chl a concentration was usually found 
to be influenced more strongly by water-flow than by nutri-
ents [7-9]. Additionally, Chl a concentration may vary with 
catchment area, water depth, or other physical factors [10, 
11].  

As one of the largest floodplains in the world, the 
Yangtze River floodplain is characterized by numerous 
shallow lakes, which were freely connected with the Yang-
tze River historically. To prevent villages and cultivated 
lands along the lakeshore from being flooded, embankments 
and sluice gates were constructed during the 1950s-70s, and 
thereby isolated most lakes from the river. At present, only 
three lakes (Dongting Lake, Poyang Lake and Shijiu Lake) 
have direct connections with the Yangtze mainstem. As a 
mosaic of lentic and lotic patches, these river-connected 
lakes are a kind of special waterbodies, being intermedi-
ate between lentic and lotic systems. Therefore, it is of sci-
entific significance to analyze factors influencing Chl a con-
centration in these special waters. How-ever, previous stud-
ies of phytoplankton chlorophyll in Yangtze basin were 
mainly concentrated on isolated lakes [4, 12-15]. Little work 
has been done on the connected lakes [16, 17].  

In view of the special hydrologic regime, the regulation 
on Chl a concentration of the Yangtze-connected lakes 
should receive attention. To determine environmental fac-
tors influencing Chl a concentration, we conducted sys-
tematic investigations in three Yangtze-connected lakes in 
2004. 

 
 
STUDY AREA AND METHODS 

Dongting Lake, Poyang Lake and Shijiu Lake are river-
connected lakes, situated in the mid-lower Yangtze basin, 
or, in other words, located in the monsoon region of East 
Asia subtropical zone. The locations and limnological para-
meters of study lakes are given in Fig. 1 and Table 1, re-
spectively. 
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FIGURE 1 - Location of study lakes. Numbers of sampling sites in Dongting Lake, Poyang Lake and Shijiu Lake are 30, 22 and 7, respectively. 

 
 
 

TABLE 1 - Limnological parameters of the Yangtze-connected lakes. 

Lake Dongting Lake Poyang Lake Shijiu Lake 
Area (km2) 2432 (33.0 m ASL) 2933 (21.7 m ASL) 210.4 (9.3 m ASL) 
Maximum (Mean) depth (m) 23.5 (6.4) 29.2 (5.1) 5.3 (4.1) 
Annual mean water level fluctuation (m) 5.90 5.86 3.10 
Annual precipitation (mm) 1200-1450 1340-1780 569-1685 
Annual evaporation (mm) 1174-1420 800-1200 900-1100 
Annual water input (108 m3) 
Retention time (d) 
Annual mean air temperature (℃) 

3065.7 
18.2 
16.8 

1501.2 
10.0 
16.6 

78.4 
41.0 
16.0 

Annual mean water temperature (℃) 16.7 16.5 -- 
pH 8.1 7.3 7.8 
Annual mean water sediment concentration (g m-3) 127 66 -- 
Dominant algae Cryptophyta, Bacillariophyta Bacillariophyta Chlorophyta, Euglenophyta 
ASL = above sea level. Data were from related materials [16-18]. 

 
 
 
Phytoplankton chlorophyll a (Chl a) was investigated 

in May-July (high water level) and September-December 
(low water level) 2004. Water depth (Z) and transparency 
(ZSD) were measured with a sounding lead and a Secchi 
Disc, respectively. Water velocity (U) was measured with 
a propeller-type current meter (Model LS 1206B). Water 
samples were taken from surface and bottom at each site, 
mixed, and brought back to laboratory for analyses. Sus-
pended solids (SS) was analyzed according to APHA [19], 
and total nitrogen (TN) by the alkaline potassium persul-
fate digestion-UV spectrophotometric method. TP was ana-
lyzed by the ammonium molybdate method. Chl a concen-
tration was measured after acetone extractions by reading 
absorbance at 665 nm and 750 nm using a spectropho-
tometer (Unico UV-2000, Shanghai, China). All the above 
methods were described in detail by Huang [20]. Macro-
phytes were sampled with a scythe, 2-4 times at each site, 
then cleaned, superfluous water removed, and weighed for 
wet weight (BMac). 

STATISTICA 6.0 was used for analyses of Pearson 
correlation, Unequal N HSD test after one-way ANOVA, 
multiple regression analysis. To reduce heterogeneity of 
variances, U data were transformed to U0.5 and other vari-
ables were log10-transformed. Macrophyte biomass (BMac) 
was transformed to log10(BMac+1). 

 
 
RESULTS 

Chlorophyll a concentrations and environmental parameters 

Data from 59 sampling sites in 10 regions were exam-
ined. It seemed that phytoplankton chlorophyll a (Chl a) 
was closely related to certain environmental factors, espe-
cially to water velocity (U) at many sites. Hence, all sites 
were grouped into lotic sites and lentic sites based on the 
velocity, and then tested by means of one-way ANOVA. 
It demonstrated that Chl a, U and several velocity-related 
parameters were significantly different between two groups 
of sites. Overall results are given in Table 2. 



© by PSP Volume 18 – No 10. 2009   Fresenius Environmental Bulletin    

1896 

0.4 0.8 1.2 1.6 2.0 2.4 2.8
-0.8

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

y=0.41 x - 0.15  R2=0.17  n=43  p=0.01

lo
g 1

0C
hl

 a
 (m

g 
m

-3
) 

log10TP (mg m-3) 

 

TABLE 2 - Phytoplankton chlorophyll a concentrations and environmental parameters  
(mean±SE) of study sites (with comparison of parameters between two groups of sites in the last two rows). 

 Regions Chl a T SS Z ZSD U TN TP BMac 
 
 
 
Dongting Lake 

West Dongting 
South Dongting 
Dunhu 
East Dongting 
Junshanhouhu 
Entire Lake 

2.79±0.81 
1.96±0.38 
4.90±1.90 
3.20±0.68 
9.67±2.25 
3.03±0.43 

22.3±0.8 
22.9±0.9 
26.6±0.4 
22.5±1.6 
23.5±2.0 
21.4±0.7 

0.054±0.018 
0.032±0.001 
0.037±0.001 
0.032±0.005 
0.024±0.010 
0.030±0.004 

3.2±0.4 
2.2±0.2 
2.4±0.2 
4.7±0.7 
3.8±0.7 
3.7±0.3 

86±10 
42±9 
168±9 
41±4 
87±21 
75±6 

0.42±0.02 
0.39±0.03 
0.00±0.00 
0.07±0.01 
0.01±0.00 
0.23±0.02 

1157±116 
1089±161 
927±191 
1977±267 
1425±146 
1400±100 

154±15 
152±19 
59±19 
148±16 
82±25 
132±8 

386±249 
0±0 
563±299 
0±0 
0±0 
179±88 

 
 
Poyang Lake 
 
 

Banghu 
Dahuchi 
Changhuchi 
Dachahu 
Entire Lake 

1.51±0.24 
0.85±0.17 
2.40±0.63 
2.57±0.38 
2.11±0.43 

26.2±0.9 
27.0±0.9 
27.9±1.3 
25.6±0.8 
25.5±0.6 

0.031±0.019 
0.017±0.011 
0.073±0.025 
0.020±0.007 
0.030±0.008 

2.4±0.2 
1.9±0.1 
2.1±0.0 
3.0±0.1 
3.7±0.3 

184±25 
144±8 
114±38 
118±15 
139±12 

0.02±0.00 
0.00±0.00 
0.00±0.00 
0.02±0.01 
0.02±0.00 

491±93 
563±200 
1038±466 
1257±116 
953±107 

35±12 
36±10 
40±13 
15±2 
25±4 

1014±201 
727±252 
440±216 
299±107 
545±96 

Shijiu Lake  5.91±0.98 27.9±0.6 0.036±0.017 2.5±0.2 104±8 0.00±0.00 647±105 89±8 346±117 
All lotic sites  2.07±0.17a 22.1±0.7a 0.029±0.005a 4.1±0.3a 83±8a 0.21±0.02a 1467±132a 126±11a 174±52a 
All lentic sites  4.99±0.78b 25.6±0.8a 0.034±0.007b 2.8±0.2b 110±9a 0.00±0.00b 1030±107b 63±8b 354±75a 
Chl a, phytoplankton chlorophyll a (mg m-3); SS, suspended solids (kg m-3); Z, water depth (m); ZSD, transparency (cm); U, water velocity (m s-1); TP, 
total phosphorus concentration of water (mg m-3); TN, total nitrogen concentration of water (mg m-3); BMac, macrophyte biomass (g m-2). Means with 
different superscripts are significantly different (p<0.05). 

 
 
 
According to the Chl a standard suggested 1996 by 

Nürnberg [21] for fixed boundary classification of lake 
system, 15.6% of lentic sites were in eutrophic-hypertrophic 
state, and all lotic sites in oligotrophic-mesotrophic state 
(Fig. 2).  

Since river-connected lakes have lotic and lentic re-
gions, the following analyses referring to the influencing 
factors of Chl a will be given according to respective re-
gions. 

 

 
 

FIGURE 2 - Box lines of chlorophyll a concentration. Trophic states 
determination according to the fixed boundary classification system 
[21]. 

 
Factors influencing chlorophyll a in lentic regions 

In lentic regions, correlations between phytoplankton 
chlorophyll a (Chl a) and environmental parameters (Ta-
ble 3) indicated that TP was the major factor influencing 
Chl a. The regression of log10TP-log10Chl a is given in 
Fig. 3. 

The relations of residuals from log10TP-log10Chl a re-
gression to water depth (Z) and TN were significant (Ta-
ble 4). Adding Z and TN as driving variables, R2 of multi-
ple regression model could increase obviously. The equa-
tion was as follows: 

log10Chla=-1.42+0.51log10TP+0.29log10TN+0.71log10Z 
(R2=0.36 n=43 p=0.001). 
 
Factors influencing chlorophyll a in lotic regions 

Pearson correlation analyses (Table 3) showed that 
water velocity (U) and TN were most important in deter-
mining Chl a in lotic regions. Further regression analyses 
revealed that a higher amount of variance in log10Chl a was 
accounted for by U0.5 (Fig. 4a, parabola, r2=0.34), com-
pared to log10TN (Fig. 4b, linear, r2=0.16). Therefore, the 
major factor influencing Chl a should be U. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

FIGURE 3 - Regression between total phosphorus (log10TP) and 
chlorophyll a concentration (log10Chl a) in lentic sites of the Yang-
tze-connected lakes.  
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TABLE 3 - Pearson correlation coefficients (r) between chlorophyll a concentration and environmental factors in 
lentic sites (upper triangle) and lotic sites (lower triangle) (0.001≤p<0.05 denoted as “*”, p<0.001 denoted as “**”). 

 
log10Chl a log10T log10S

S 
log10Z log10ZSD U0.5 log10TP log10TN log10(TN:TP

) 
log10(BMac+1) 

log10Chl a  -0.09 -0.08 0.19 -0.31* -- 0.42* 0.29 -0.09 -0.30* 
log10T -0.22  -0.27 0.29 0.61** -- -0.31* -0.45** -0.05 0.34* 
log10SS 0.29 -0.37  -0.39* -0.43* -- 0.39* -0.26 -0.55* -0.04 
log10Z -0.13 0.08 0.08  0.30* -- -0.38* 0.18 0.40* -0.24 
log10ZSD 0.09 0.27 -0.07 -0.04  -- -0.53** -0.54** 0.01 0.31 
U0.5 -0.39* -0.17 0.27 0.10 -0.33*  -- -- -- -- 
log10TP -0.01 -0.35* 0.63** 0.02 -0.35* 0.63**  0.09 -0.71** -0.18 
log10TN 0.39* -0.57** 0.34 -0.03 -0.28* -0.04 0.18  0.65** -0.35* 
log10(TN:TP) 0.22 0.08 -0.50* -0.05 0.30* -0.62** -0.90** 0.34*  -0.04 
log10(BMac+1) -0.10 0.22 -0.42* -0.18 0.44** -0.46** -0.50** -0.36* 0.37*  

 
 
 

TABLE 4 - Pearson correlations between residuals of log10Chl a＝f (log10TP)  
and environmental factors in lentic sites (0.001≤ p<0.05 denoted as “*”). 

 log10T log10SS log10Z log10ZSD 
r -0.03 -0.24 0.37* -0.19 
p 0.85 0.24 0.02 0.22 
 U0.5 log10TN log10(TN:TP) log10(BMac+1) 
r -- 0.35* 0.23 -0.31 
p -- 0.02 0.15 0.05 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4 - Regressions between environmental factors and chlorophyll a concentration (log10Chl a) in lotic 
sites of the Yangtze-connected lakes. x-axes are (a) water velocity (U0.5), (b) total nitrogen (log10TN), (c) total phosphorus (log10TP).  
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TABLE 5 - Pearson correlations between residuals of log10Chl a＝f (U0.5)  
and environmental factors in lotic sites (0.001≤ p<0.05 denoted as “*”). 

 log10T log10SS log10Z log10ZSD 
r -0.13 0.22 0.33* 0.07 
p 0.39 0.27 0.02 0.59 
 log10TN log10TP log10(TN:TP) log10(BMac+1) 
r 0.35* 0.11 0.08 -0.14 
p 0.01 0.44 0.59 0.32 

 
 
 
The relations of residuals from U0.5-log10Chl a regres-

sion to water depth (Z) and TN were significant (Table 5). 
Similar to the above results, R2 of multiple regression model 
could obviously increased by adding Z and TN as driving 
variables. The equation was log10Chl a = -0.51-2.16U0.5+ 
1.37log10TN+0.23log10Z (R2=0.47 n=58 p<0.001). 

 
 
DISCUSSION 

The average phytoplankton Chla of Yangtze-connected 
lakes ranged from 2.98 to 3.65 mg m-3, higher than the 
range of 0.52-2.88 mg m-3 in the mainstream and tributar-
ies of the Yangtze River [22, 23], but lower than the range 
of 3.17-26.5 mg m-3 in Yangtze-isolated lakes [4, 24]. The 
differences are considered to be mainly attributed to water 
residence times, which are much shorter in lotic waters than 
in lentic environment. River-connected lakes have lentic 
and lotic regions, therefore, they are regarded as partly lotic, 
so that their residence times and chlorophyll a concentrate 
are intermediate. 

A positive relationship between water velocity (U) and 
TP in lotic regions was found in our work (Fig. 5). Previ-
ous researches also reported that higher flow was closely 
linked to greater input of external nutrient sources [10, 11]. 
However, higher nutrient concentrations do not necessar-
ily translate into a larger phytoplankton biomass under lotic 
conditions. As shown in Fig. 4a, U0.5-log10Chl a relation-
ship in lotic regions is parabolic. When U is below 0.12 m/s, 

Chl a tends to increase with velocity. In this situation, 
phytoplankton biomass is thought to be determined main-
ly by nutrient concentrations. When U exceeds 0.12 m/s, Chl 
a tends to decline, suggesting that U inhibition has prevailed 
over nutrients effects on growth of algae. High U may cause 
high concentrations of SS, resulting in light limitation on 
algal growth. (cf. Table 3). Sand pellets carried by high 
water flow may spoil cell walls of phytoplankton [25]. High 
water flow, i.e. short residence time, increases phytoplank-
ton losses by wash-out effects [11]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 5-Regression between water velocity (U0.5) and total  

phosphorus (log10TP) in lotic sites of the Yangtze-connected lakes.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 6 - Comparison of phosphorus-chlorophyll a regression lines from Yangtze-connected and Yangtze-isolated lakes. 
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The relationships of log10TP-log10Chl a in two types 
of Yangtze lakes are compared (Fig. 6). Both regressions 
in river-isolated lakes and lentic regions of river-connected 
lakes are linear. The slope of the former is 1.04 [4], within 
the range of the slopes (0.87-1.21) of foreign lakes [3, 26, 
27]. The slope of lentic regions of river-connected lakes is 
0.41, about 1/3 of that of river-isolated lakes. This disparity 
is mainly attributed to the different residence times. The 
regression derived from lotic regions in river-connected 
lakes is curvilinear, with the slope negative. This character 
is considered to be a result of synthetic effects of TP and U.  

 
 
CONCLUSIONS 

According to phytoplankton Chl a-level in fixed 
boundary classification system, some regions in three Yang-
tze-connected lakes were found to be in eutrophic state. 
Statistical analyses indicate that Chl a values in lentic and 
lotic regions were mainly influenced by TP and water 
velocity U, respectively. A brief comparison of TP-Chl a 
relationships among the Yangtze-isolated lakes, lentic and 
lotic regions of the Yangtze-connected lakes is given as 
well. The obviously lower Chl a concentration and slope 
of log10Chl a＝f (log10TP) in river-connected lakes dem-
onstrated that the river-lake connectivity can significantly 
modify relationship between TP and Chl a concentrations. 

 
 
 
ACKNOWLEDGEMENTS 

We thank Shi-Kai Wu and Ai-Ping Wu for chemical 
and macrophyte data. Special thanks are due to Yan-Ling 
Liang and David Hamilton for their inspired comments on 
the manuscripts. This work was supported by Chinese 
Academy of Sciences (KZCX1-YW-14-1, KZCX2-YW-
426-02) and 973 Program (2008CB418006).  

 
 
 
REFERENCES 

[1]  Canfield, D.E.Jr. (1983) Prediction of chlorophyll a concen-
trations in Florida lakes: the importance of phosphorus and 
nitrogen. Water Resour. Bull., 19: 255–262. 

[2]  Hoyer, M.V. and Jones, J.R. (1983) Factors affecting the re-
lation between phosphorus and chlorophyll a in midwestern 
reservoirs. Can. J. Fish. Aquat. Sci., 40: 192-199. 

[3]  Brown, C.D., Hoyer, M.V., Bachmann, R.W. and Canfield, 
D.E. (2000) Nutrient-chlorophyll relationships: an evaluation 
of empirical nutrient-chlorophyll models using Florida and 
north-temperate lake data. Can. J. Fish. Aquat. Sci., 57: 
1574–1583. 

[4]  Wang, H.J., Liang, X.M., Jiang, P.H., Wang, J., Wu, S.K. 
and Wang, H.Z. (2008) TN:TP ratio and planktivorous 
fish do not affect nutrient-chlorophyll relationships 
in shallow lakes. Freshwat. Biol., 53: 935-944. 

[5]  Canfield, D.E.Jr., Shireman, J.V., Colle, D.E., Haller, W.T., 
Watkins, C.E. II and Maceina, M.J. (1984) Prediction of 
chlorophyll a concentrations of aquatic macrophytes. Can. J. 
Fish. Aquat. Sci., 41: 497–501. 

[6]  Millard, E.S., Myles, D.D., Johannsson, O.E. and Ralph, 
K.M. (1996) Seasonal phosphorus deficiency of Lake Ontario 
phytoplankton at two index stations: light versus phosphorus 
limitation of growth. Can. J. Fish. Aquat. Sci., 53: 1112–
1124. 

[7]  Pace, M.L., Findlay, S.E.G. and Lints, D. (1992) Zooplank-
ton in advective environments: the Hudson River community 
and a comparative analysis. Can. J. Fish. Aquat. Sci., 49: 
1060–1069. 

[8]  Tockner, K., Pennetzdorfer, D., Reiner, N., Schiemer, F. and 
Ward, J.V. (1999) Hydrological connectivity and the ex-
change of organic matter and nutrients in a dynamic river-
floodplain system (Danube, Austria). Freshwater Biol., 41: 
521–535. 

[9]  Lewis, W.M.JR., Hamilton, S., Lasi, M.A., Rodríguez, M. 
and Saunders, J.F. III. (2000) Ecological determinism on the 
Orinoco floodplain. BioScience, 50(8): 681–692. 

[10]  Kilkus, S.P., LaPerriere, J.D. and Bachmann, R.W. (1975) 
Nutrients and algae in some central lowa streams. J. WPCF, 
47(7): 1870–1879. 

[11]  Søballe, D.M. and Kimmel, B.L. (1987) A large-scale com-
parison of factors influencing phytoplankton abundance in 
rivers, lakes, and impoundments. Ecology, 68: 1943–1954. 

[12]  Wang, J. and Shen, G.H. (1981) The primary production of 
the phytoplankton of Lake Donghu and its correlation with 
various ecological factors. Acta Hydrobiol. Sin., 7: 259-311. 

[13]  Wang, J. and Liang, Y.L. (1995) The annual dynamics of 
density, biomass and production of Baoan Lake with estima-
tion of potential fishery production capacity of this resource. 
In: Liang, Y.L. and Liu H.Q. (Eds.) Resources, environment 
and fishery ecological management of macrophytic lakes 
(No.1). Science Press, Beijing, 61–88. 

[14]  Yao, Y.Z. (2003) The analysis on characteristics and correla-
tion among the ecological environment parameters of eutro-
phication in Yueyang Nanhu Lake. Journal of Yueyang Nor-
mal University (Natural Science) 16(1): 91–94. 

[15]  Ge, D.B., Wu, X.L., Zhu, W.L. and Zhou, T.C. (2005) Chlo-
rophyll a and its relationship with water quality in Southlake, 
Yueyang City. Environmental Monitoring in China, 21(4): 
69–71. 

[16]  Zhu, H.H. and Zhang, B. (1997) The Poyang Lake. Press of 
University of Science and Technology of China, Hefei, 349 
pp. 

[17]  Dou, H.S. and Jiang, J.H. (2000) The Dongting Lake. Press 
of University of Science and Technology of China, Hefei, 
344 pp. 

[18]  Wang, S.M. and Dou, H.S. (1998) Lakes of China. Science 
Press, Beijing, 580 pp. 

[19]  APHA (American Public Health Association) 1995. Standard 
methods for the examination of water and wastewater. 
APHA, Washington, D.C. 1268 pp. 



© by PSP Volume 18 – No 10. 2009   Fresenius Environmental Bulletin    

1900 

[20]  Huang, X.F. (1999) Survey, observation and analysis of lake 
ecology. Standards Press of China, Beijing, 247 pp. 

[21]  Nürnberg, G.K. (1996) Trophic state of clear and colored, 
soft- and hardwater lakes with special consideration of nutri-
ents, anoxia, phytoplankton and fish. Lake Reservoir Manage., 
12(4): 432–447. 

[22]  Wang, J. and Liang Y.L. (1991) Seasonal dynamics of plank-
ton algae in the middle reach (Wuhan section) of the Chang-
jiang River. In: Wuhan branch, Chinese academy of sciences 
(Ed.) Collected papers on resources, ecology, environment, 
economic exploitation in Yangtze basin. Science Press, Bei-
jing, 196–203. 

[23]  Wang, J., Liang, Y.L. and Xie, Z.C. (1999) Comparative stu-
dies on chlorophyll a content and production of planktonic 
algae in a large river-connected lake (The Poyang Lake) and 
neighbouring sections of the Changjiang River. Acta Hydro-
biol. Sin., 23(Suppl.): 40–46. 

[24]  Wang, H.Z., Wang, H.J., Liang, X.M., Ni, L.Y., Liu, X.Q. 
and Cui, Y.D. (2005) Empirical modelling of submersed ma-
crophytes in Yangtze lakes. Ecol. Model., 188: 483–491. 

[25]  Allan, J.D. and Castillo, M.M. (2007) Stream ecology: struc-
ture and function of running waters. Springer, The Netherlands, 
436 pp. 

[26]  Nicholls, K.H. and Dillon, P.J. (1978) An evaluation of phos-
phorus-chlorophyll-phytoplankton relationships for lakes. Int. 
Revue ges. Hydrobiol., 63(2): 141–154. 

[27]  Schindler, D.W. (1978) Factors regulating phytoplankton 
production and standing crop in the world’s freshwaters. 
Limnol. Oceanogr., 23(3): 478–486. 

 
 
 
 
 
 
 
 
 
 

Received: December 29, 2008 
Revised: March 30, 2009 
Accepted: April 28, 2009 
 
 
CORRESPONDING AUTHOR 

Hong-Zhu Wang 
State Key Laboratory of  
Freshwater Ecology and Biotechnology 
Institute of Hydrobiology 
Chinese Academy of Sciences 
430072 Wuhan, Hubei Province 
P.R. CHINA  
 
Phone/Fax: +86 27 68780719  
E-mail: wanghz@ihb.ac.cn 
 

 FEB/ Vol 18/ No 10/ 2009 – pages  1894 - 1900 

 
 
 
 
 
 
 
 
 
 
 
 
 
 


