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Abstract

Submersed macrophytes in Yangtze lakes have experienced large-scale declines due to the increasing human activities during
past decades. To seek the key factor that affects their growth, monthly investigations of submersed macrophytes were conducted
in 20 regions of four Yangtze lakes during December, 2001–March, 2003. Analyses based on annual values show that the ratio of
Secchi depth to mean depth is the key factor (50% of macrophyte biomass variability among these lakes is statistically explained).
Further analyses also demonstrate that the months from March to June are not only the actively growing season for most macro-
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1. Background and purpose

Situated in the warm, humid Yangtze basins in
China, there are hundreds of shallow lakes with a
total area exceeding 20,000 km2 (Liu, 1984), where
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the submersed macrophytes are remarkably abun
Macrophytes provide food and shelters for aquatic
mals, regulate nutrient dynamics within the system
prevent resuspension of the sediments (Scheffer, 1998).
Hence, they are important for normal lake ecosyst
However, on account of the increasing human activ
for decades, deterioration of submersed macroph
has widely occurred (Ni, 1999). It eventually turne
the macrophyte-dominated, clear-water lakes
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algae-dominated, turbid waters. Realizing their im-
portance, the recovery of submersed macrophytes has
become an increasing public concern. In addition to
many practical works ought to be done for that pur-
pose, the creation of certain models to predict growing
tendency of vegetation under different conditions is
also necessary.

Modelling referring to submersed vegetation
may be categorized into distribution models and
biomass models. Distribution models focus mainly
on analyzing plant occurrence probability, maximum
colonizing depth and cover rate (Chambers and Kalff,
1985; Duarte et al., 1986; H̊akanson and Boulion,
2002; Scheffer et al., 1992), but neglect plant quantity.
On the other hand, biomass models, including growth
simulation and holistic empirical ones, are developed
for quantitative purpose. Simulation models are ad-
vantageous to predict daily growth or seasonal trends
of macrophyte biomass (Best et al., 2001; Collins
and Wlosinski, 1989; Scheffer et al., 1993; Van Nes
et al., 2002, 2003), but their generation requires a
large number of detailed physiological and daily
environmental data. Comparatively, holistic empirical
models enable us to pay less attention to growing
details and use fewer independent variables. Holistic
models consist of empirical and dynamic models. In
practice, empirical models have the advantage of using
fewer parameters. A number of empirical models
were established and have successfully predicted sub-
mersed macrophyte biomass or production (Canfield
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key factor influencing submersed macrophyte biomass
(BMac, g/m2) and described an empirical relationship
as:

BMac = −811.3 + 3596.91
ZSD

ZM
,

r = 0.42, p = 0.004 (1)

However, their work was more or less preliminary,
especially it was confined to a single lake.

The present study was conducted in 20 regions of
four lakes. Its purpose is fourfold. First, to determine
the key factors that affect the growth of submersed
macrophytes; secondly, to generate key-time models by
analyzing the annual effective intensity of key factors;
thirdly, to compare the predictive power between key-
time models and synchronic ones (using paired variates
obtained at same time); and, lastly, to analyze briefly
the thresholds of the key factor and the limitation of
models in application.

2. Lakes and methods

Studies were carried out in four fluvial lakes
(114◦08′–48′ E, 30◦07′–23′ N), with areas ranging
from 29 to 67 km2 and average depths within 2–4 m.
Nets or dikes were presented inside the lakes and, thus
subdivided the waters into 20 regions in total (Fig. 1).

The macrophyte communities in the lakes are quite
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anse et al., 1998; Squires et al., 2002). Among them
he comprehensive research on North Temperate
yHåkanson and Boulion (2002)was the most impre
ive. They used several parameters including rat
ecchi depth to water depth, latitude, maximum w
epth, and lake area above 1 m to predict subme
acrophyte production and achieved great suc

r2 = 0.68, slope = 1.5, intercept =−23.8). Unfortu-
ately, their model did not work well in Yangtze lak
r2 = 0.59, slope = 16.79, intercept =−3.54× 104)
wing to the differences in latitudes, depths and p
omponents.

A similar empirical model in China has be
eported byLiang et al. (1995)from Baoan Lake
a Yangtze lake). They pointed out that the ratio
ecchi depth (ZSD, m) to mean depth (ZM, m) was the
imilar, mainly consisting ofPotamogeton crispus
inn., P. maackianus A. Benn., Najas major Linn.,
allisneria spp.,Hydrilla verticillata (Linn. f.), Cer-
tophyllum oryzetorum Kom., Myriophyllum spictum
inn. All species are treated as the same functio
roup.

Quantitative work was conducted during Decem
001–March, 2003, in which submersed macrop
iomass (BMac), water depth (ZM) and transparenc
ZSD) were determined monthly, while water temp
ture (T), conductivity (Cond), pH, concentration

otal nitrogen (TN), ammonium (NH3-N), total phos
horus (TP) and chlorophyll-a in phytoplankton (C
) were determined seasonally.

In terms of the methods, submersed macroph
ere sampled by scythes 2–4 times at each site,
leaned, removed superfluous water and weighe
et biomass. The dry weight biomass of macrop
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Fig. 1. Regions in four lakes. The anterior number is region-code and the posterior one in parenthesis denotes the number of sampling sites.

material can be calculated by multiplying the wet
biomass by 0.08, a factor that represents the aver-
age percent dry weight of submersed macrophytes
(Chen and Ho, 1975). ZM and ZSD were measured
by sounding lead and Secchi Disc respectively. T,
Cond and pH were measured in the field with YSI
Environmental Monitoring Systems 6600. TN, NH3-
N, TP and Chla were determined according to Chi-
nese Water Analysis Methods Standards (Huang et al.,
1999).

STATISTICA6.0 was used for ANOVA, correla-
tion and regression analyses. When analyzing, region-
specific data were used instead of site-specific data for
two reasons: (1) our aim is to predict regional biomass
level rather than site-specific values; (2) sampling er-
rors caused by clumped distribution of plants can be
reduced.

3. Results and discussions

3.1. Annual mean data

Data from 105 sites of 20 regions in four lakes
were taken into account. One-way ANOVA analyses
showed that the differences of macrophytic biomass
and other parameters from separate regions were sig-
nificantly greater than those among sites within a region
(P < 0.005). It means that most region-specific data are
independent enough and the communications between
regions, if any, can be neglected.Table 1presents the
annual means ofBMac and environmental factors of all
investigated regions.

It should be pointed out that the datumZSD/ZM = 1
derived from the method so far we use can hardly re-
flect light attenuation, because it means that the trans-



486
H

.-Z
.W

ang
etal./E

cologicalM
odelling

188
(2005)

483–491

Table 1
Annual mean value of factors in regions studied

Lake Region Code Area
(km2)

BMac

(g/m2)
ZM (m) ZSD (m) ZSD/ZM T (◦C) Cond

(mS/cm)
pH NH3-N

(mg/L)
TN
(mg/L)

TP
(mg/L)

Chl a
(�g/L)

Baoan Lake Baoankou 1 3.63 6415 2.18 1.54 0.71 17.6 0.376 7.92 0.171 0.441 0.011 3.91
Huangfengkou 2 1.88 3763 1.93 1.87 0.97 17.8 0.885 7.94 0.083 0.257 0.015 1.11
Changlingzhou 3 8.80 2211 2.50 1.97 0.79 17.3 0.457 8.06 0.136 0.257 0.009 1.49
Zhuzhou 4 6.45 661 2.55 1.72 0.67 17.3 0.355 8.03 0.141 0.188 0.013 4.28
Longwangtou 5 6.25 239 2.54 1.65 0.65 17.3 0.374 7.96 0.158 0.230 0.017 4.27
Lianhuazhou 6 1.57 26 2.64 1.70 0.64 18.2 0.252 8.10 0.177 0.241 0.015 2.47
Outang 7 1.45 3426 2.53 1.87 0.74 18.3 0.236 8.18 0.143 0.180 0.013 3.99
Shuimiao 8 1.57 8508 2.33 2.08 0.89 18.3 0.213 8.38 0.137 0.194 0.011 2.22
Changlingtou 9 1.49 6747 1.86 1.77 0.95 18.8 0.199 8.41 0.154 0.268 0.016 1.98
Tongshawan 10 1.91 1703 2.21 1.44 0.65 18.6 0.253 8.08 0.219 0.205 0.016 2.04
Biandantang 11 3.50 307 2.17 1.36 0.63 17.3 0.193 8.07 0.214 0.270 0.018 4.46
Xiaosihai 12 1.50 914 1.80 1.27 0.71 16.9 0.321 7.90 0.152 0.190 0.032 2.04

Niushan Lake Dongpian 13 17.5 1052 3.63 2.93 0.81 20.5 0.129 8.17 0.110 0.861 0.008 2.75
Zhongpian 14 11.8 138 3.61 2.79 0.77 20.7 0.137 7.85 0.107 0.931 0.005 1.80
Xipian 15 13.3 972 3.46 2.65 0.77 20.9 0.134 8.03 0.115 0.977 0.005 3.30

Lu Lake Wuqianmu 16 5.71 49 2.36 0.80 0.34 17.9 0.241 7.69 0.330 0.783 0.037 7.05
Yiwanwu 17 12.1 63 2.48 0.72 0.29 17.6 0.195 7.60 0.263 0.530 0.033 4.24
Hongqicha 18 4.51 30 1.91 0.98 0.51 17.6 0.168 7.48 0.096 0.254 0.022 5.87
Caimohu 19 7.12 300 2.07 1.32 0.64 18.0 0.142 7.82 0.107 0.286 0.020 1.85

Western Liangzi
Lake

20 66.7 663 3.79 2.48 0.65 21.0 0.110 7.82 0.130 0.438 0.013 2.37

Mean 8.39 1909 2.53 1.75 0.69 18.4 0.269 7.97 0.157 0.399 0.016 3.17
CV 160.8 133.7 24.4 35.5 24.8 7.1 64.8 2.9 38.4 67.4 53.5 48.9
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parency is actually greater than water depth but Secchi
Disc can only work above the bottom. For that matter,
correction of the datum was made by comparing the
transparencies synchronously measured from deeper
but homogeneous habitats.

3.2. The key factor

Table 2shows the linear correlation coefficients (r)
computed from absolute data inTable 1.

FromTable 2, it is easy to recognize that the most
prominent correlation occurs betweenZSD/ZM and
BMac (r2 = 0.50), so that statistically the key factor for
macrophyte growth should beZSD/ZM. Biologically, it
demonstrates that plant growth depends greatly upon
light intensity and depth, or, in other words, cleaner and
shallower aquatic habitats have greater carrying capac-
ity for submersed vegetation. This result is in agree-
ment with that ofLiang et al. (1995). Similar results
were also obtained byHåkanson and Boulion (2002),
andSquires et al. (2002)from several North Temperate
and Arctic lakes. Besides the above-mentioned factors,
some authors (Duarte and Kalff, 1986; Duarte et al.,

Table 2
Simple correlations (r) in non-transformed parameters

BMac ZM ZSD ZSD/ZM T Cond pH NH3-N TN TP Chla

BMac 1.00 −0.31 0.25 0.71 −0.06 0.24 0.62 −0.17 −0.27 −0.30 −0.30
ZM 1.00 0.70 0.08 0.84 −0.42 0.02 −0.20 0.69 −0.52 −0.11
Z 7
Z 0
T 0
C
p
N
T
T
C

S

T
S month

Aug March

B 0.57
19
0.011

S

1986) were of the opinion that the change of littoral
slope and annual precipitation might successfully ex-
plain the variation of submersed macrophyte biomass.
It is, however, not the case in Yangtze lakes, mostly be-
cause our lakes are shallow and the annual precipitation
around lake area is almost the same (1200–1600 mm,
according toChangchun Institute of Geography, 1998).

A significant correlation also exists between pH and
BMac, but it is considered to be a result mainly due to
plant metabolism.

Stepwise multiple regression analyses were made
for both absolute and transformed (according to
Håkanson and Lindström, 1997) data. Ther2 reaches
maximum when absoluteBMac is selected asy-variable
and, whenF-value to enter is set as 4, onlyZSD/ZM
works well (F = 17.95,r2 = 0.50). It further indicates
thatZSD/ZM is the key factor affecting plant growth. As
a driving variable for predictive modelling, it has sev-
eral advantages: (1) high correlation toBMac in these
areas; (2) lower variability than many other factors
(Table 1); (3) easy operation and relatively high pre-
cision; (4) involving information of other factors, as
indicated by the correlation coefficients inTable 2.
SD 1.00 0.64 0.7
SD/ZM 1.00 0.2

1.0
ond
H
H3-N
N
P
hl a

ignificant correlation (p < 0.05) in bold letters.

able 3
imple correlations and probability levels between yearlyBMac and

ZSD/ZM

December March April May June July

Mac r 0.67 0.76 0.60 0.63 0.68 0.45
n 20 17 20 20 20 20
p 0.001 <0.001 0.005 0.003 0.001 0.048

ignificant correlation (p < 0.05) in bold letters.
−0.09 0.54 −0.62 0.41 −0.84 −0.55
0.32 0.75 −0.60 −0.19 −0.59 −0.66

−0.47 0.14 −0.31 0.69 −0.54 −0.28
1.00 0.04 −0.15 −0.36 0.00 −0.24

1.00 −0.19 −0.22 −0.53 −0.47
1.00 0.08 0.66 0.55

1.00 −0.16 0.15
1.00 0.48

1.00

lyZSD/ZM

ust September October November December January

0.28 0.77 0.69 0.30 0.41 0.37
20 16 20 20 20 20
0.23 <0.001 0.001 0.203 0.076 0.108
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Fig. 2. Relationships between annual meanBMac andZSD/ZM during the critical period after deleting 11 dots (open circles): (A) March, (B)
April, (C) May, (D) June.

3.3. Key-time and key-time models

Correlations between annual meanBMac and
monthlyZSD/ZM are shown inTable 3. Significant cor-
relations occur in most months.

Under natural condition,BMac changes seasonally
like a sigmoid curve. It increases conspicuously in
July, reaches maximum around August, then maintains
relatively stable until next February or March. During
its maximum period, the large vegetation may greatly
influence water clarity and so submersed intensity. In
that case, the key effective factor is ratherBMac per se
thanZSD/ZM, although their correlations may still be

significant. Hence, usingZSD/ZM obtained after July
for prediction purpose seems to have deviated from our
original intension. Moreover, the great amount of work
in an annual study should also be considered indeed.

No matter what it is, it would be more reasonable to
confine our attention to the important or critical pe-
riod in a year. According to previous studies (Sun,
1992; Chen, 2000) and our observations, we define the
months from March to June as the critical period or, as
used here, the key-time, for it is the actively growing
season of macrophytes on the one hand, and the most
critical period also forZSD/ZM due to the increasing
temperature and precipitation on the other.
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Fig. 2A–D gives the regressions between annual
meanBMac andZSD/ZM in March–June. Outlier tests
were made according toHåkanson and Peters (1995).
Eleven dots (open circles) inFig. 2 should be deleted
by following reasons: (1) a, c, g and j, low transparency
caused by paper mill effluence; (2) b, d, h and k, too
shallow to measureZSDcorrectly; (3) f and i, dense fish-
ing nets obstructing waves and temporarily increasing
ZSD; (4) e,P. crispus abruptly withered.

After deleting those abnormal data, four key-time
models are generated:

March : BMac = −3149+ 4854.6
ZSD

ZM
,

r2 = 0.75, p < 0.001, n = 15 (2)

April : BMac = −3396+ 7298.6
ZSD

ZM
,

r2 = 0.76, p < 0.001, n = 16 (3)

May : BMac = −3490+ 6380.6
ZSD

ZM
,

r2 = 0.77, p < 0.001, n = 17 (4)

June :BMac = −3536+ 7900.6
ZSD

Z
,

r

w of
s
t

are
n odel
b rther

Fig. 3. Relationship between annual meanBMac and meanZSD/ZM

of March, April, May and June.

generated (Fig. 3):

BMac = −3931+ 7072.9
ZSD

ZM
,

r2 = 0.81, p < 0.001, n = 18 (6)

Here, BMac (ww, g/m2) is annual mean biomass of
submersed macrophytes;ZSD/ZM is the means for
March–June (dots deleted asFig. 2, not shown in
Fig. 3).

3.4. Comparisons of predictive power between
key-time and synchronic models

To compare predictive power between key-time and
synchronic models, a new synchronic model by using
our annual means is generated as follows:

BMac = −3690+ 6915.1
ZSD

ZM
,

r2 = 0.67, p < 0.001, n = 18 (7)

Here,ZSD/ZM is annual means.

T
r

M Key-time

D Region-specific
E 2) (3) (4) (5) (6)
r .75 0.76 0.77 0.69 0.81
p <0.001 <0.001 <0.001 <0.001 <0.001
n 5 16 17 18 18
M

2 = 0.69, p < 0.001, n = 18 (5)

hereBMac (ww, g/m2) is annual mean biomass
ubmersed macrophytes;ZSD/ZM is monthly value in
he four months.

Due to the fact that the data in each single month
ot stable enough. A comprehensive key-time m
ased on mean data during the four months is fu

able 4
2, p andn values corresponding to Eqs. (1)–(7)

odels Synchronic Synchronic

ata Site-specific Region-specific
q. (1) (7) (

2 0.18 0.67 0
0.004 <0.001
* 18 1

* Estimated to be 30–40.
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Table 5
Thresholds of transparency during growing season

BMac = 0 Eq.(2) (March) Eq.(3) (April) Eq. (4) (May) Eq.(5) (June) Eq.(6) (March–June)

ZSD/ZM 0.66 0.47 0.55 0.45 0.56
ZM (m) 2.0 2.5 3.0 3.0 2.5
ZSD (m) 1.3 1.2 1.7 1.4 1.4

Table 4shows the values ofr2,p andn corresponding
to Eqs.(1)–(7).

As indicated by ther2-value in Table 4, the pre-
dictive powers of various models are ranked as: key-
time models > synchronic model with region-specific
data� synchronic model with site-specific data. Ob-
viously, the key-time models with region-specific data
are the most effective models we have obtained so far.
The lower predictive power of synchronic models is re-
garded as a result of time-lag effects of environmental
factors.

No previously published paper has dealt with the
use of key-time element for modelling of submersed
vegetation. As an attempt with originality, our key-
time models have following advantages: (1) they are
based on a solid and reliable data-set. All the year-
round macrophytic and environmental data were mea-
sured in situ by ourselves. They differed from many
other models that only analyzed the month with max-
imum macrophyte biomass or used a lot of data
from different sources with high uncertainties and low
time-compatibility (Duarte et al., 1986; H̊akanson and
Boulion, 2002); (2) they enable us to predict vegeta-
tion growing tendency before plant biomass reaching
maximum and stability; (3) practically, they are more
accurate and easier to be operated in comparison with
some other models, because they have higher predictive
power and only two operatedx-variables are needed.

For actual application of the models, one may use
a ict
y ) or,
b el
(

3
a

T
i 5.

The fact that the mean depth of Yangtze lakes in June
is generally about 3 m, then the Secchi reading should
reach over 1.4 m to enable a normal growth of sub-
mersed macrophytes. Therefore, it is necessary to keep
a higher transparency for the maintenance or recovery
of submersed macrophytes. This is in good agreement
with the opinion ofLiang et al. (1995).

The models we hitherto obtained are still imperfect.
The main concern is Secchi depths. In fact, Secchi Disc
is merely a simple tool. Many factors, such as wave
action, great reading errors, and even invalidity when
light penetrates until bottom, all affect its accuracy. For
the determination of transparency, better results may be
expected if more advanced method (e.g. with luxmeter)
is used. Further, the use of our models is confined to
sub-eutrophic and eutrophic lakes. No attempt is made
to extend their use to hyper-eutrophic waters where
the anaerobic, loose substrate may exert even greater
influence on the distribution and abundance of the sub-
mersed vegetation (Barko et al., 1986; Scheffer, 1998).

4. Conclusions

In the work, we ascertained that the ratio of Secchi
depth to mean depth is the key factor affecting sub-
mersed macrophyte growth in shallow lakes. It acts
strongly on actively growing plants during key-time
from March to June annually. By relating the ratios
to annual mean biomass of macrophytes, several cor-
r ictive
p ffec-
t s of
m ith
t

A

y of
S 73
ny monthlyZSD/ZM data in March–June to pred
early mean macrophyte biomass (models (2)–(5)
etter, use meanZSD/ZM data of four months for (mod
6)) that purpose.

.5. Thresholds of transparency and limitations in
pplication

Thresholds of transparency are analyzed inTable 5.
aking Eq.(5)on first line as an example, assumeBMac

s 0, and thenZSD/ZM in June is calculated to be 0.4
esponding key-time models are generated. Pred
ower analyses demonstrate that they are highly e

ive for predicting possible annual mean biomas
acrophytes. They may benefit the work dealing w

he recovery of macrophytes in Yangtze lakes.
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